# An Algebraic Process for Visualization Design Carlos Scheidegger, Gordon Kindlmann 

VIS 2014

## Test Suites for Visualization

- How do we know that a visualization is doing the right thing?
- What is even the right thing?


## EVALUATION

## Evaluation through User Studies

- Define tasks, run user study, measure variable, do stats
- Very hard to do right, time-consuming, expensive
- and even harder for conclusions to generalize
- Whole courses are taught entirely about this - we're not going to do that


## "Evaluation through Imagination"

- Instead, we are going to use thought experiments:
- What if the input were different - what would this change cause?
- What if the picture were different - how could the input have been different?
- The answers tell us a lot about the visualization
- Not as good as a good user study, but practical







# We want a theory to explain, critique and suggest visualizations 



## Failure of The Invariance Principle

(list in some order)

$\omega\left(\neq 1_{V}\right)$


## Success of The Invariance Principle

(list in some order)

$\omega\left(=1_{V}\right)$


## Failure of The Unambiguity Principle



## Success of The Unambiguity Principle

$$
\begin{aligned}
& D \xrightarrow{r_{1}} R \xrightarrow{v} V \\
& \left(1_{D} \neq\right) \alpha \downarrow \omega\left(\neq 1_{V}\right) \\
& D \xrightarrow{r_{2}} R \xrightarrow{v} V \\
& \alpha\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[v_{1}, v_{2}, 1-v_{3}\right]
\end{aligned}
$$


$\omega\left(\neq 1_{V}\right)$


## Failure of The Correspondence Principle



## Success of The Correspondence Principle



"colormapping, then opposing" differs from "negating, then colormapping"

(a) Hue+Luminance colormap

"colormapping, then opposing" is equal to "negating, then colormapping"

(b) Diverging colormap

## The algebraic process:

# 1) Pick transformations of interest 3) Study what happens on the other side 

(We want a theory to explain, critique and suggest visualizations)

## Interlude: Cleveland and McGill

Position: Good Length: Good Angle: Not so good Saturation: Not so good

## Case Study:

# Employment rates across countries and genders 

Original visualizations by Jonathan Schwabish and NYT's Catherine Rampell



## How do we use this?



1. $\alpha_{1}$ : What if the rate was different for just one gender? Either $x_{W}^{\prime}=x_{W}+k$ and $x_{M}^{\prime}=x_{M}$, or, $x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}$.
2. $\alpha_{2}$ : What if the rates for men and women were switched?
$x_{M}^{\prime}=x_{W}$ and $x_{W}^{\prime}=x_{M}$.
3. $\alpha_{3}$ : What if the gender gap in the rate was different?
$x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}-k$.
4. $\alpha_{4}$ : What if the overall rate was different (the same gender gap)?
$x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}+k$.





5. $\alpha_{1}$ : What if the rate was dif Either $x_{W}^{\prime}=x_{W}+k$ and $x_{M}^{\prime}$
6. $\alpha_{2}$ : What if the rates for me $x_{M}^{\prime}=x_{W}$ and $x_{W}^{\prime}=x_{M}$.
7. $\alpha_{3}$ : What if the gender gap
$x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}$
8. $\alpha_{4}$ : What if the overall rate $x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}$



- NZL


1. $\alpha_{1}$ : What if the rate was dif Either $x_{W}^{\prime}=x_{W}+k$ and $x_{M}^{\prime}$
2. $\alpha_{2}$ : What if the rates for me $x_{M}^{\prime}=x_{W}$ and $x_{W}^{\prime}=x_{M}$.
3. $\alpha_{3}$ : What if the gender gap $x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}$
4. $\alpha_{4}$ : What if the overall rate $x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}$.

- USA


1. $\alpha_{1}$ : What if the rate was dif Either $x_{W}^{\prime}=x_{W}+k$ and $x_{M}^{\prime}$
2. $\alpha_{2}$ : What if the rates for me $x_{M}^{\prime}=x_{W}$ and $x_{W}^{\prime}=x_{M}$.
3. $\alpha_{3}$ : What if the gender gap
$x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}-$
4. $\alpha_{4}$ : What if the overall rate $x_{M}^{\prime}=x_{M}+k$ and $x_{W}^{\prime}=x_{W}-$

## Summary

- To evaluate a visualization:
- take one instance of the data being visualized, and think about how the input could have been different
- What this would do to the vis? Is this a good channel? Is it separable?
- Conversely, think of the good channels: position, length, luminance - do changes of these attributes correspond to sensible changes in the data?

