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1 Introduction

In this chapter, we discuss interactive visualization of big data. We will talk
about why this has recently become an active area of research, and we will
nrecent come of the mogt nromicine recent work We will digcenee a broad rance


http://cscheid.net/static/unlinked/big_data_visualization.pdf

Why do we care about
aggregation operations?

(ggplot demos)
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Data Cubes

https://arxiv.org/pdf/cs/0701155.pdf
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Abstract: Data analysis applications typically aggregate
data across many dimensions looking for anomalies or
unusual patterns. The SQL aggregate functions and the
GROUP BY operator produce zero-dimensional or one-
dimensional aggregates. Applications need the N-
dimensional generalization of these operators. This pa-
per defines that operator, called the data cube or simply
cube. The cube operator generalizes the histogram,
cross-tabulation, roll-up, drill-down, and sub-total con-
structs found in most report writers. The novelty is that
cubes are relations. Consequently, the cube operator can
be imbedded in more complex non-procedural data
analysis programs. The cube operator treats each of the
N aggregation attributes as a dimension of N-space. The
aggregate of a particular set of attribute values is a point
in this space. The set of points forms an N-dimensional
cube. Super-aggregates are computed by aggregating the
N-cube to lower dimensional spaces. This paper (1) ex-
plains the cube and roll-up operators, (2) shows how they
fit in SQL, (3) explains how users can define new aggre-
gate functions for cubes, and (4) discusses efficient tech-
niques to compute the cube. Many of these features are
being added to the SQL Standard.

these visualization and data analysis tools represent the
dataset as an N-dimensional space. Visualization tools
render two and three-dimensional sub-slabs of this space as
2D or 3D objects.

Color and time (motion) add two more dimensions to the
display giving the potential for a 5D display. A Spread-
sheet application such as Excel is an example of a data
visualization/analysis tool that is used widely. Data analy-
sis tools often try to identify a subspace of the N-
dimensional space which is “interesting” (c.g., discriminat-
ing attributes of the data set).

.........

........
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DATA CUBE

SELECT Model, Year, Color, SUM(sales) AS Sales M.Q.d.el Year QQ'QE Salas
FROM Sales Chevy 1990 blue 62
WHERE Model in {'Ford', 'Chevy'} Chevy 1990 red 5
AND Year BETWEEN 1990 AND 1992 Chevy 1990 white 95
GROUP BY CUBE Model, Year, Color; Chevy 1990 ALL 154
Chevy 1991 blue 49
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 ALL 198
Chevy 1992 blue 71
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 ALL 156
Chevy ALL blue 182
SALES Chevy ALL red 30
Model Year Color Sales Chevy  ALL white o 29
Chevy 1990 red 5 ey ALL ALL i
, Ford 1990 blue 63
Chevy 1990 white 87 C U BE Ford 1990 red 64
Chevy 1990 blue 62 Ford 1990 white 62
Chevy 1991 red 54 Ford 1990 ALL 189
Chevy 1991 white 95 Ford 1991 blue 55
Chevy 1991 blue 49 gorg 1321 bFed 53

or wnitce
Chevy 1992 red 31 Ford 1991 ALL 116
Chevy 1992 white 54 Ford 1992 blue 39
Chevy 1992 blue 71 Ford 1992 red 27
Ford 1990 red 64 Ford 1992 white 62
Ford 1990 white 62 gorg 1zii b?LL 123
or ue

Ford 1990 blue 63 rord ALL Ced 123
Ford 1991 red 52 Ford ALL white 133
Ford 1991 white 9 Ford ALL ALL 433
Ford 1991 blue 55 ALL 1990 blue 125
Ford 1992 red 27 ALL 1930 red 69
Ford 1992 white 62 ALL 1990 white 149
Ford 1992 blue 39 ALL 1990 ALEESS S43
ALL 1991 blue 106
ALL 1991 red 104
ALL 1991  white 110
ALL 1991 ALL 314
ALL 1992 blue 110
ALL 1992 red 58
ALL 1992 white 116
ALL 1992 ALL 284
ALL ALL blue 339
ALL ALL red 233
ALL ALL white 369
ALL ALL ALL 941

Figure 4: A 3D data cube (right) built from the table at the
left by the CUBE statement at the top of the figure.




How do we compute it?



How do we compute it?

- Either on the fly
- Or accessing precomputed values

- Or some combination of it



How do we compute it?

hitp://web.eecs.umich.edu/~jag/eecsb84/papers/
implementing_data_cube.pdf

Implementing Data Cubes Efficiently”

Venky Harinarayan Anand Rajaraman Jeffrey D. Ullman

Stanford University

Abstract

Decision support applications involve complex queries on very large databases. Since response
times should be small, query optimization is critical. Users typically view the data as multi-
dimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of
interest, like total sales. The values of many of these cells are dependent on the values of other
cells in the data cube. A common and powerful query optimization technique 1s to materialize
some or all of these cells rather than compute them from raw data each time. Commercial
systems differ mainly in their approach to materializing the data cube. In this paper, we In-



How do we compute it?

http://www.cs.umd.edu/~nick/projects/Dwarf.pdf
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ABSTRACT

Dwarf is a highly compressed structure for computing, storing, and
querying data cubes. Dwarf identifies prefix and suffix structural
redundancies and factors them out by coalescing their store. Pre-
fix redundancy is high on dense areas of cubes but suffix redun-
dancy is significantly higher for sparse areas. Putting the two to-
gether fuses the exponential sizes of high dimensional full cubes
into a dramatically condensed data structure. The elimination of
suffix redundancy has an equally dramatic reduction in the com-
putation of the cube because recomputation of the redundant suf-
fixes is avoided. This effect is multiplied in the presence of corre-
lation amongest attributes in the cube. A Petabvte 25-dimensional

Antonios Deligiannakis
Dept. of Computer Science
University of Maryland, College Park

adeli@cs.umd.edu

Yannis Kotidis
AT&T Labs —Research

kotidis@research.att.com

size, both for computing and storing it. The number of all possible
group-bys increases exponentially with the number of the cube’s
dimensions and a naive store of the cube behaves in a similar way.
The authors of [GBLP] provided some useful hints for cube com-
putation including the use of parallelism, and mapping string di-
mension types to integers for reducing the storage. The problem is
exacerbated by the fact that new applications include an increasing
number of dimensions and, thus, the explosion on the size of the
cube is a real problem. All methods proposed in the literature try to
deal with the space problem, either by precomputing a subset of the
possible group-bys [HRU, GHRU, Gup, BPT, SDN], by estimating



How do we compute it?

Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

imMens: Real-time Visual Querying of Big Data

Zhicheng Liu*, Biye Jiang’ and Jeffrey Heer"

*Department of Compul
{ Department of Computer Scien

Abstract

Data analysts must make sense of increasingly large d
methods for interactive visualization of big data, follo
should be limited by the chosen resolution of the vi
a design space of scalable visual summaries that u
sampling) to visualize a variety of data types. We thei
& linking) among binned plots through a combinatior
implement our techniques in imMens, a browser-base
and rendering on the GPU. In benchmarks imMens
dozens of visualizations, with invariant performance

Categories and Subject Descriptors (according to ACM

Nanocubes for Real-Time Exploration of Spatiotempol

Lauro Lins, James T. Klosowski, and Carlos Scheidegger

R - P AR
e 7 Ifmguage o y ' : .
e cn et - S % T

ghom  eise , e SR R ¢ &

NI\% - ‘ L R

app \ i A g Al > Ty

e N vene T o Ay s & : [N

*‘ < iz . &0 Y./

| : ‘ :

| g L a X - .

Linked view of tweets in San Diego, US US-wide choropleth map of relative device popularity  Close-up view



Spatial Tricks

- Question: Given a 1D array of n integers and O(n)
precomputation time and space, how do you
answer queries about the sum of k consecutive
integers in O(1) per query?

- Question: Given a 1D array of n integers and O(n)
precomputation time and space, how do you
answer gueries about the max of k consecutive
integers in O(log n) per query?



Different kinds of
aggregation operations

- What’s the main difference between “a+b” and

max(a,b)?



Different kinds of
aggregation operations

- What's the main difference between “a+b” and

max(a,b)?

- Groups vs monoids



Spatial Tricks

- How do you extend these tricks to multiple

dimensions?



Spatial Tricks

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets

Lauro Lins, James T. Klosowski, and Carlos Scheidegger
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Fig. 1. Example visualizations of 210 million public geolocated Twitter posts over the course of a year. The data structure we
propose enables real-time (these images above were rendered faster than the typical screen refresh rate) visual exploration of large,
spatiotemporal, multidimensional datasets. The visual encodings built using nanocubes are within a controllable difference to ones
rendered by a traditional linear scan over the dataset. They naturally support linked navigation and brushing, and include choropleth
maps, time series over arbitrary regions and scales of space and time, parallel sets, histograms, and binned scatterplots. The
color scale of the choropleth map is a diveraina scale in which blue corresponds to iIPhones beina relatively more ponular. and red



How do we display it?

http://graphics.stanford.edu/papers/polaris_extended/polaris.pdf

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.8, NO.1,

JANUARY-MARCH 2002 1

Polaris: A System for Query, Analysis,
and Visualization of Multidimensional
Relational Databases

Chris Stolte, Diane Tang, and Pat Hanrahan

Abstract—In the last several years, large multidimensional databases have become common in a variety of applications such as data
warehousing and scientific computing. Analysis and exploration tasks place significant demands on the interfaces to these databases.
Because of the size of the data sets, dense graphical representations are more effective for exploration than spreadsheets and charts.
Furthermore, because of the exploratory nature of the analysis, it must be possible for the analysts to change visualizations rapidly as
they pursue a cycle involving first hypothesis and then experimentation. In this paper, we present Polaris, an interface for exploring
large multidimensional databases that extends the well-known Pivot Table interface. The novel features of Polaris include an interface
for constructing visual specifications of table-based graphical displays and the ability to generate a precise set of relational queries

from the visual specifications. The visual specifications can be rapidly and incrementally developed, giving the analyst visual feedback

as they construct complex queries and visualizations.

Index Terms—Database visualization, database analysis, visualization formalism, multidimensional databases.

1 INTRODUCTION

IN the last several years, large databases have become
common in a variety of applications. Corporations are
creating large data warehouses of historical data on key
aspects of their operations. International research pro-
jects such as the Human Genome Project [20] and
Digital Sky Survey [31] are generating massive data-
bases of scientific data.

generated from the resulting tables. Visual Insights recently
released a new interface for visually exploring projections
of data cubes using linked views of bar charts, scatterplots,
and parallel coordinate displays [14].

In this paper, we present Polaris, an interface for the
exploration of multidimensional databases that extends the
Pivot Table interface to directly generate a rich, expressive


http://graphics.stanford.edu/papers/polaris_extended/polaris.pdf
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http://graphics.stanford.edu/papers/pan_zoom/paper.pdt

Multiscale Visualization Using Data Cubes

Chris Stolte, Diane Tang, Pat Hanrahan
Stanford University

Abstract

Most analysts start with an overview of the data before gradually
refining their view to be more focused and detailed. Multiscale pan-
and-zoom systems are effective because they directly support this
approach. However, generating abstract overviews of large data
sets is difficult, and most systems take advantage of only one type
of abstraction: visual abstraction. Furthermore, these existing sys-
tems limit the analyst to a single zooming path on their data and
thus a single set of abstract views.

This paper presents: (1) a formalism for describing multiscale
visualizations of data cubes with both data and visual abstraction,
and (2) a method for independently zooming along one or more di-
mensions by traversing a zoom graph with nodes at different levels
of detail. As an example of how to design multiscale visualizations
using our system, we describe four design patterns using our for-
malism. These design patterns show the effectiveness of multiscale
visualization of general relational databases.

1 Introduction

When exploring large datasets, analysts often work through a
process of “Overview first, zoom and filter, then details-on-
demand” [14]. Multiscale visualizations are an effective technique
for facilitating this process because they change the visual represen-
tation to present the data at different levels of abstraction as the user

e Zoom graphs: We present zoom graphs as a formal nota-
tion for describing multiscale visualizations of hierarchically
structured data that supports multiple zooming paths and both
data and visual abstraction. We also present a system based
upon this formalism in which we can easily implement these
visualizations.

e Design patterns: While these graphs and our system provide
a general method for describing and developing multiscale vi-
sualizations of hierarchically structured data, designing such
visualizations remains a hard and challenging problem. We
use our formalism to enumerate four design patterns in the
style of Gamma et al. [10] that succinctly capture the critical
structure of commonly used multiscale visualizations. In ad-
dition, these patterns illustrate the use of small multiples and
tables in multiscale visualizations.

Note that we are using data cubes not only because they pro-
vide a powerful mechanism for data abstraction, but also because
many large and important data sets are already stored in relational
databases and data cubes.

The layout of the rest of this paper is as follows. In Section 2,
we survey existing approaches to multiscale visualization. Next,
we describe in Section 3 how multiscale visualizations can be ex-
pressed as graphs using our Polaris formalism and data cubes and
then implemented in Rivet [5]. We then present our design patterns
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The paper that started a
billion-dollar company...




