

Recap

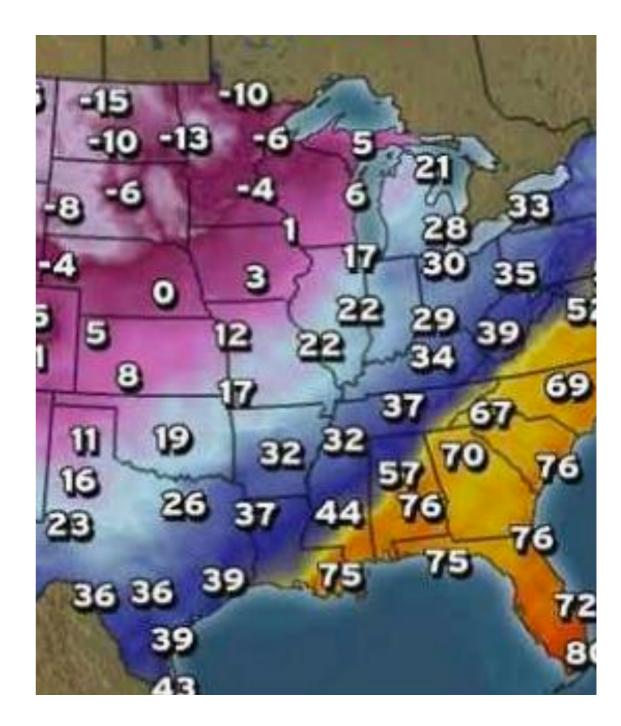
- So far, we've studied methods to determine the position of a data point on the screen
 - graph drawing, treemaps, scatterplots, PCA

- However, some datasets come with very good positional information
 - Wind maps, weather simulations, CT scans

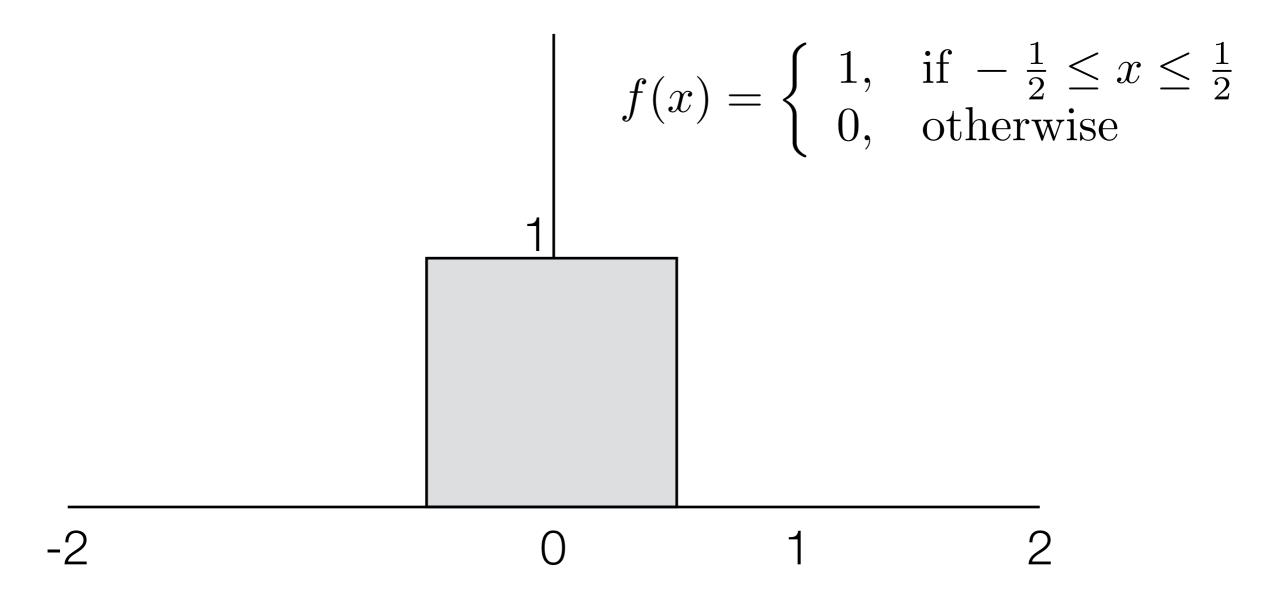
How do we represent spatial data?

- In the real world, there's infinitely many data points in a weather map
- In a computer, we only have finite memory and finite time

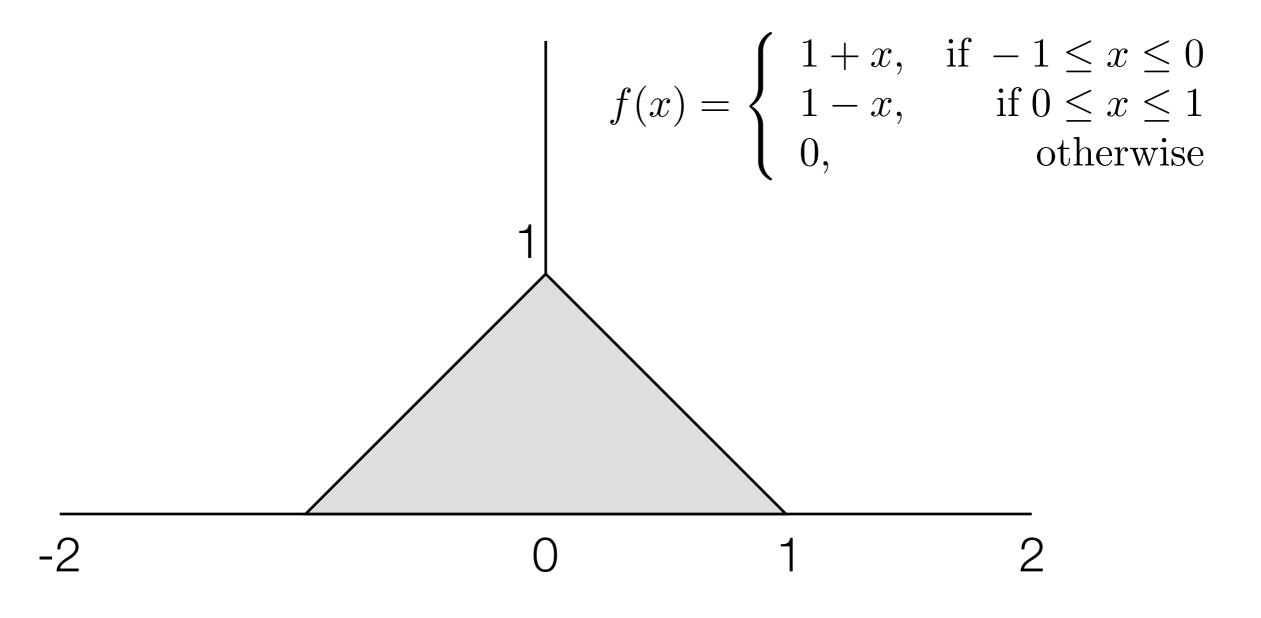
 How do we solve this problem?

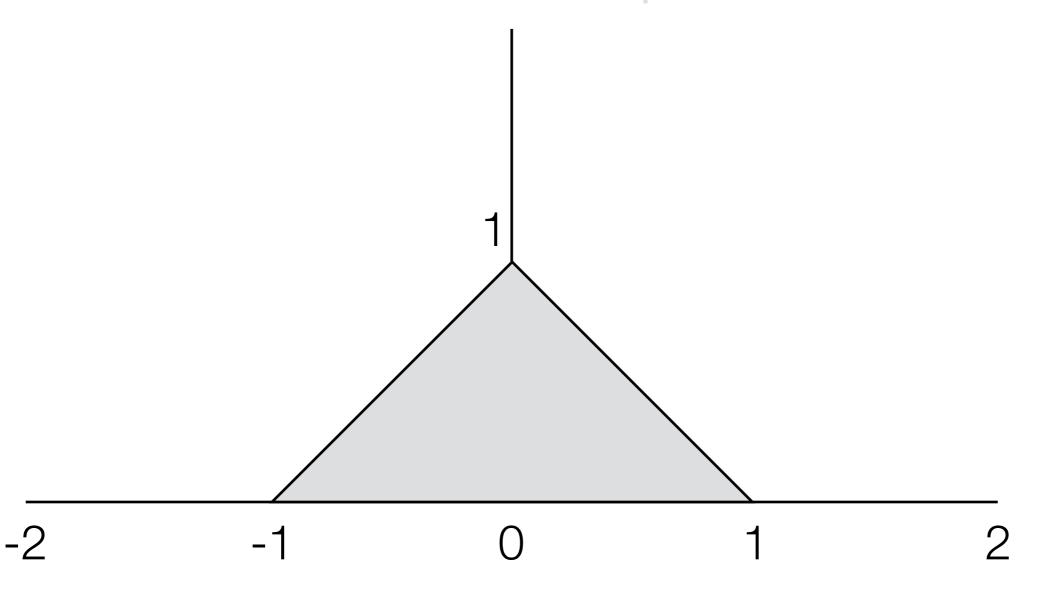


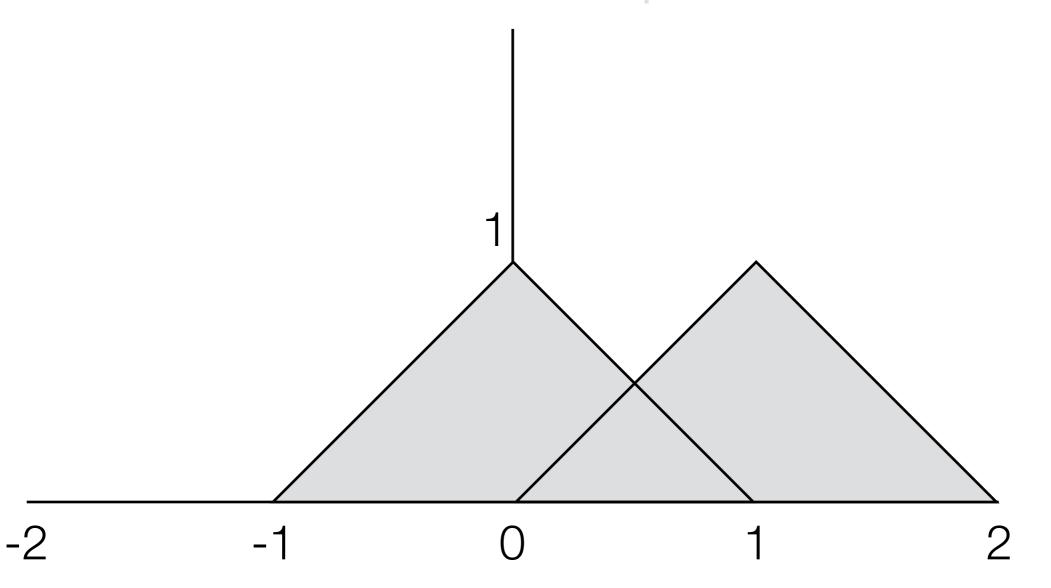
Some functions can be represented succinctly

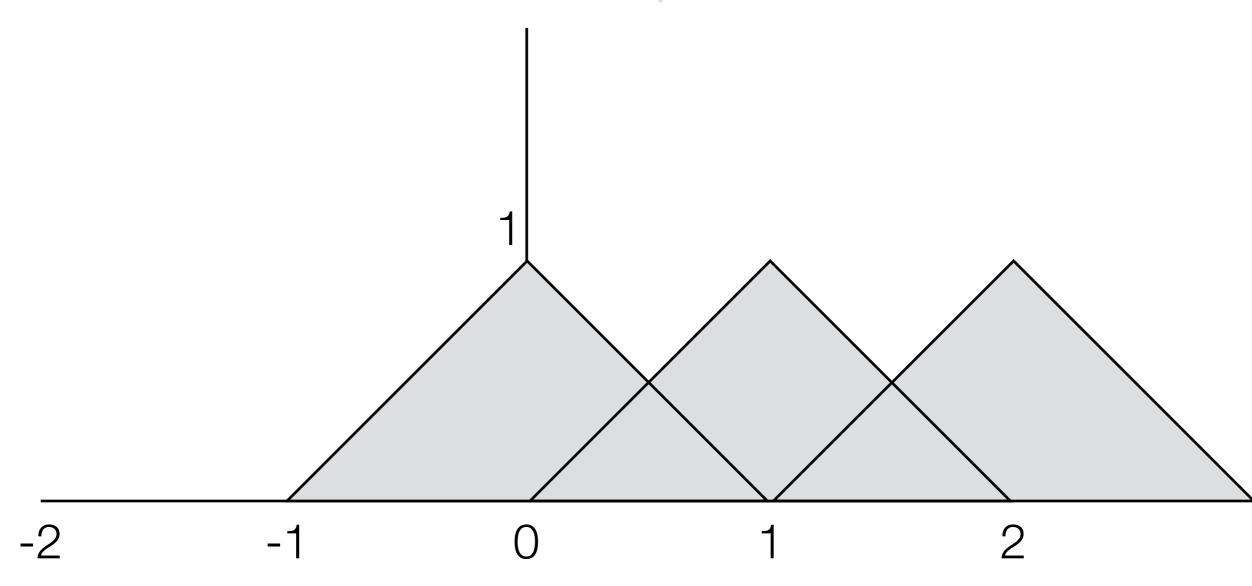


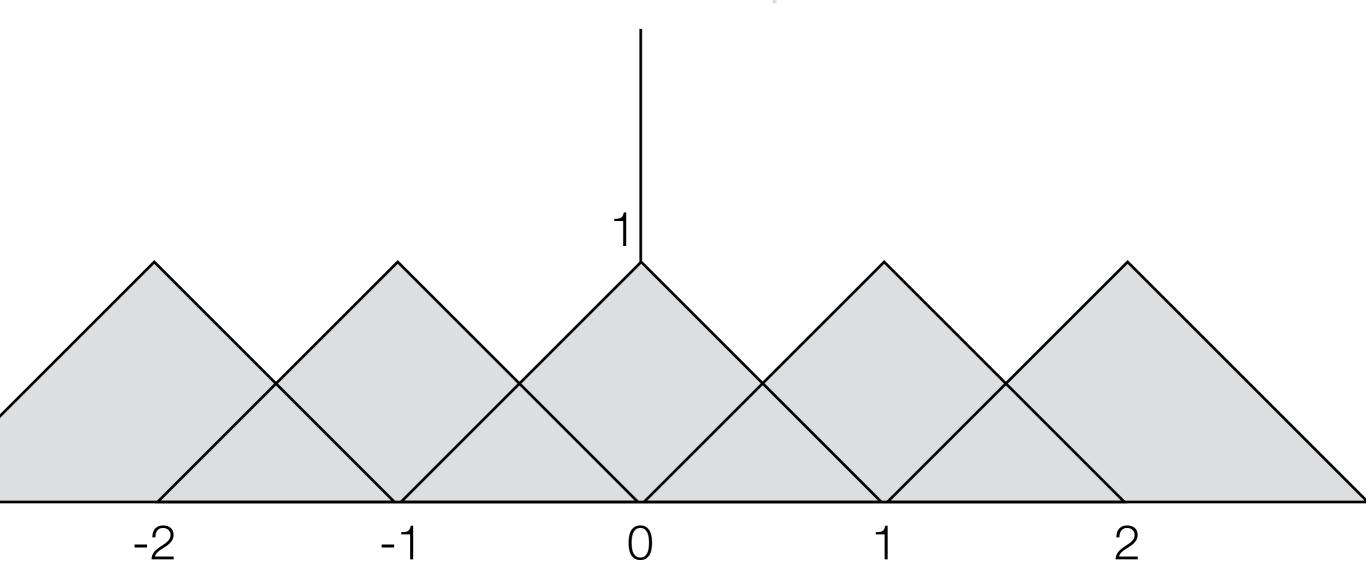
Some functions can be represented succinctly

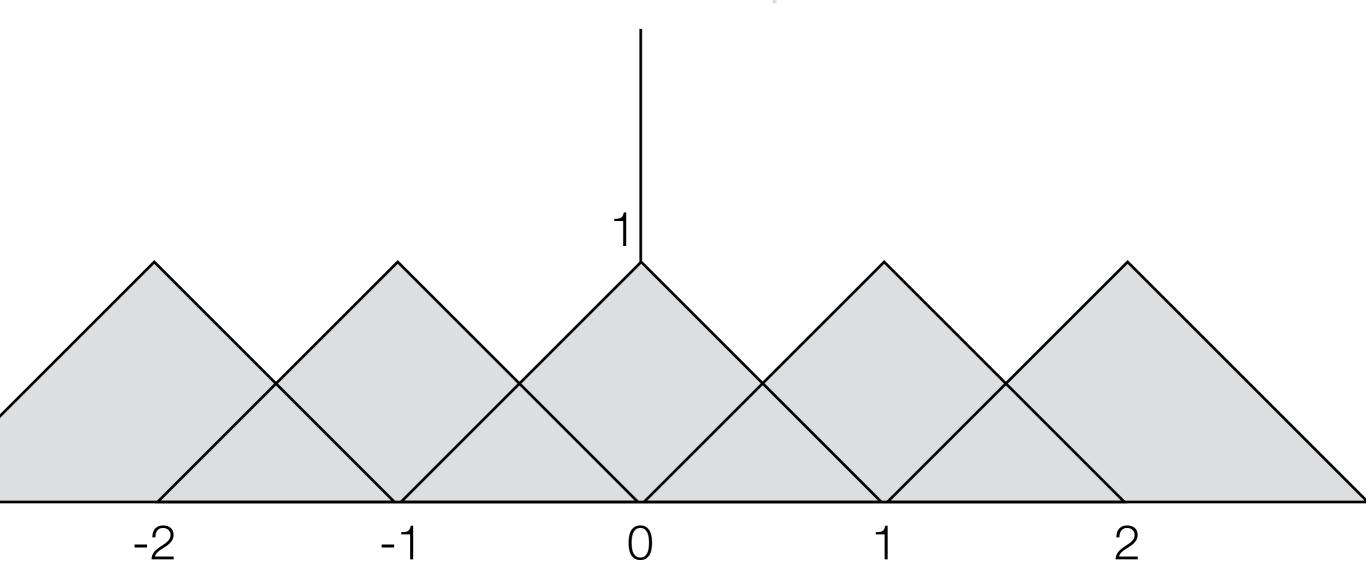


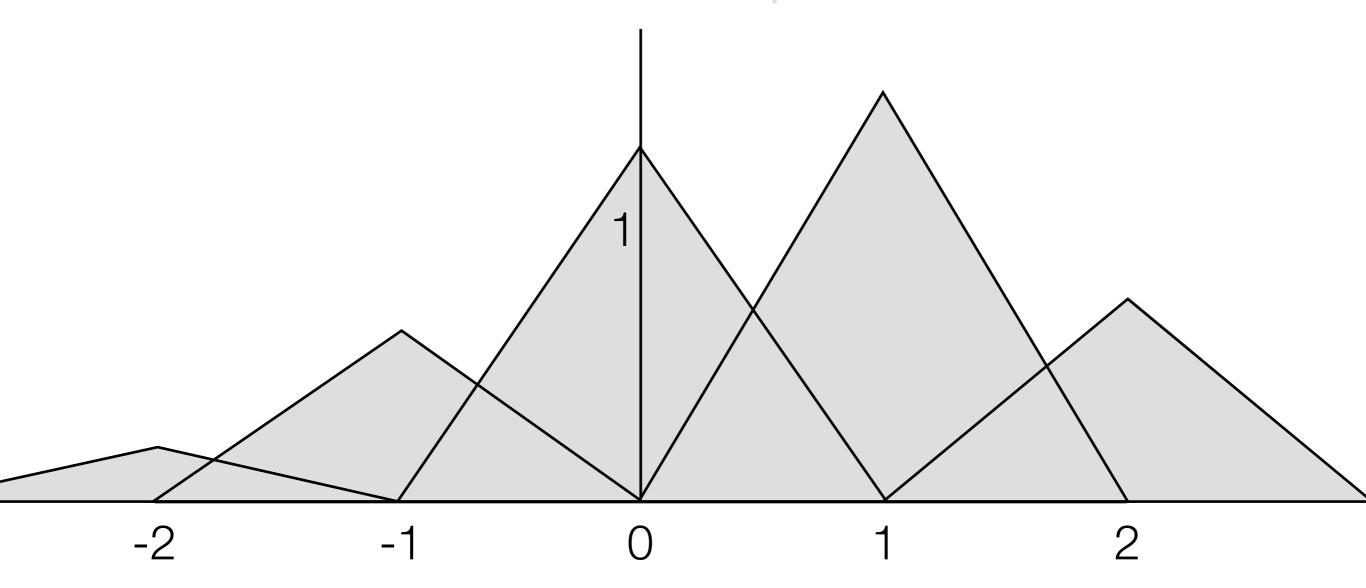


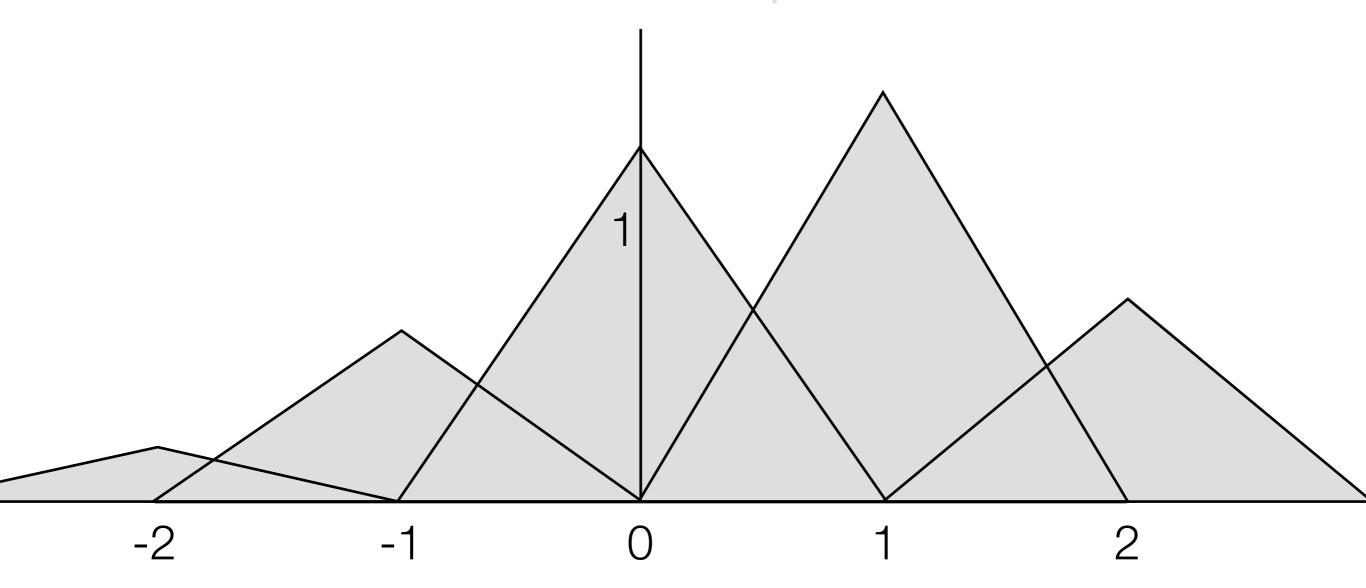


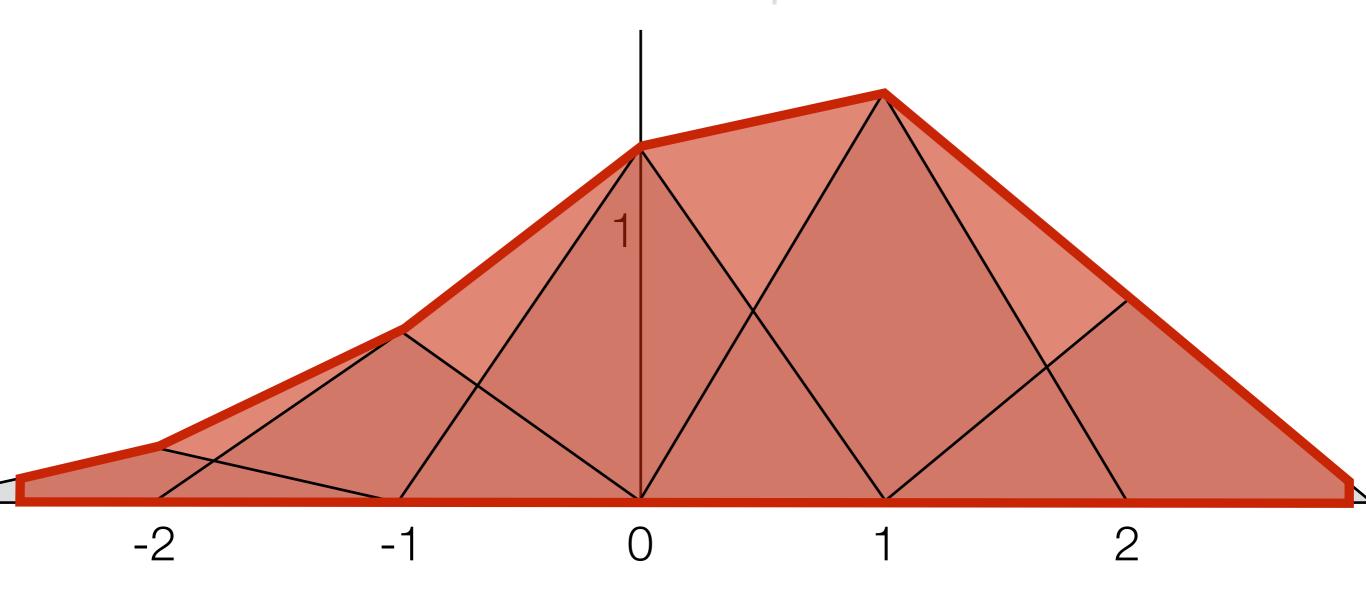


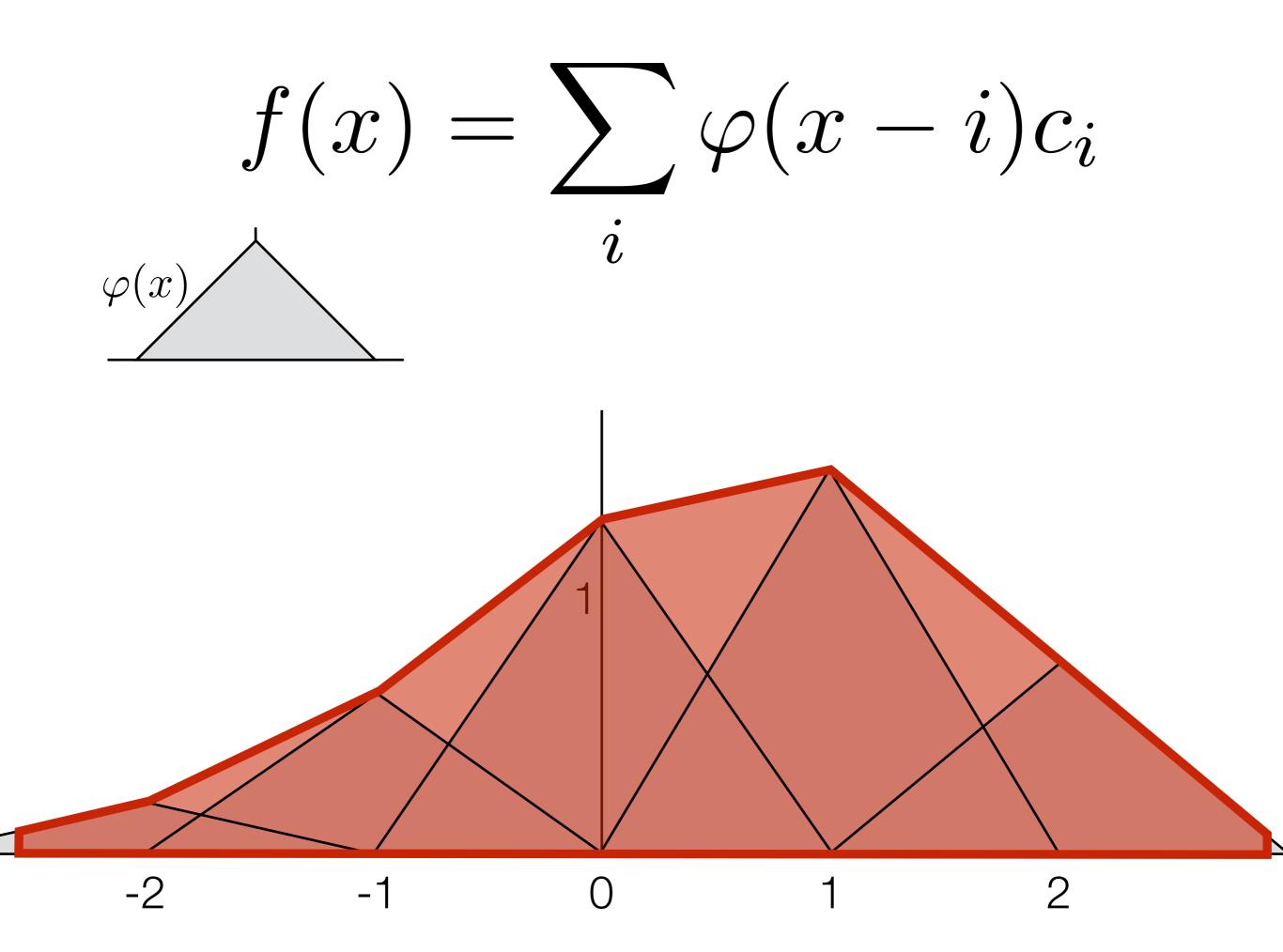






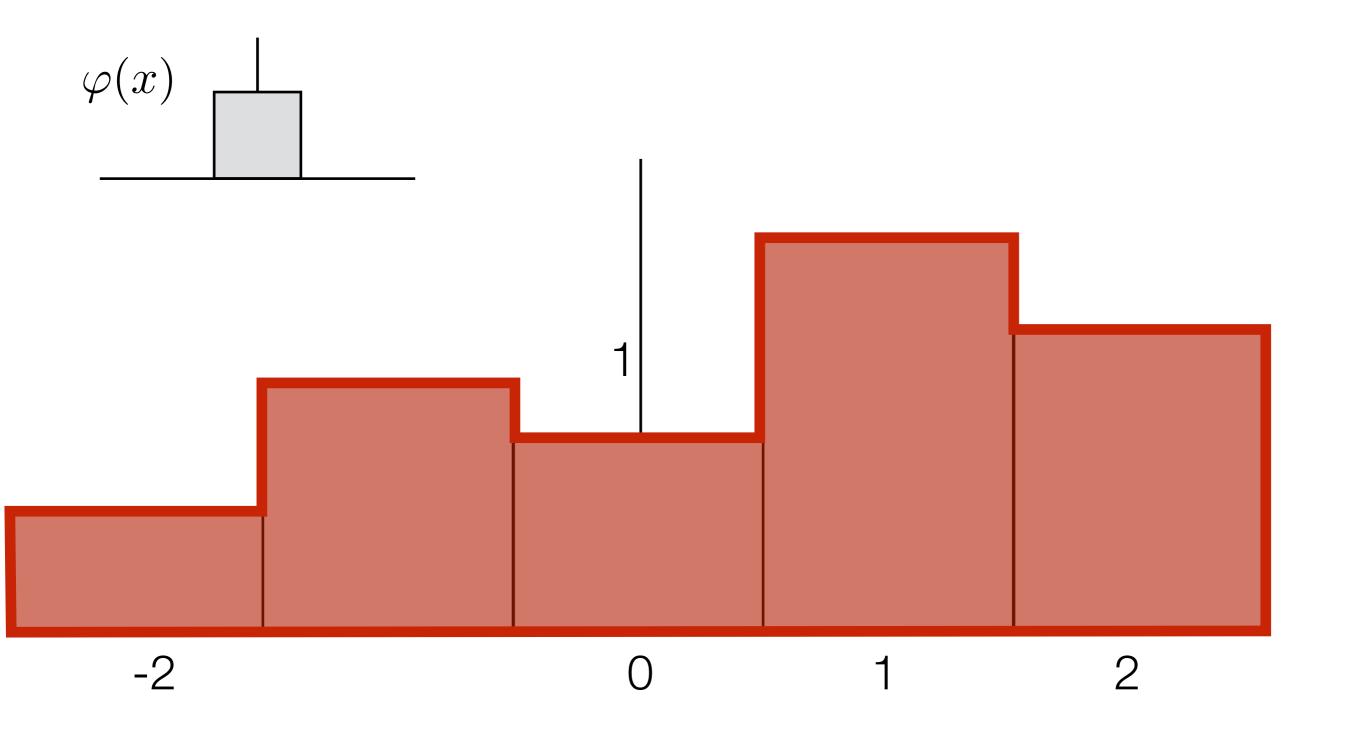




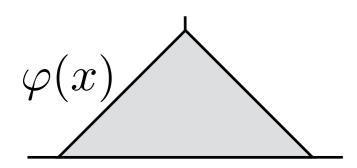


shifts scales sums $\varphi(x-i)c_i$ simple f(x) =**functions** 2

Example: nearest-neighbor interpolation

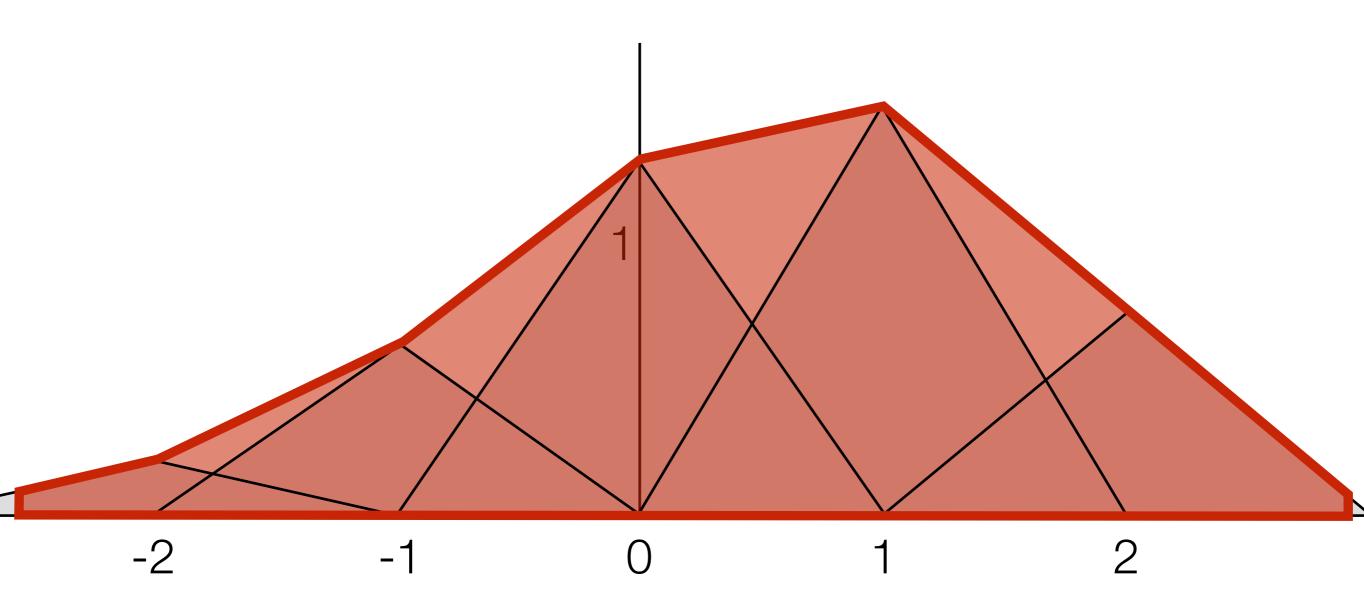


Example: linear interpolation

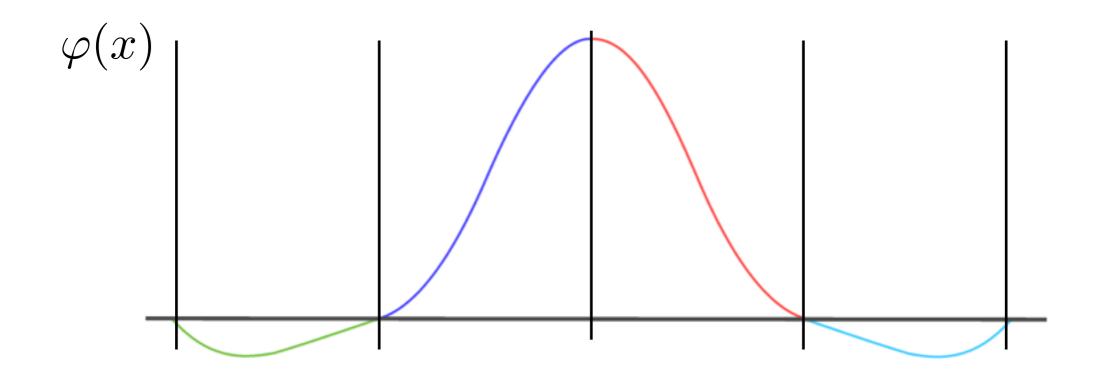


Alternative formulation:

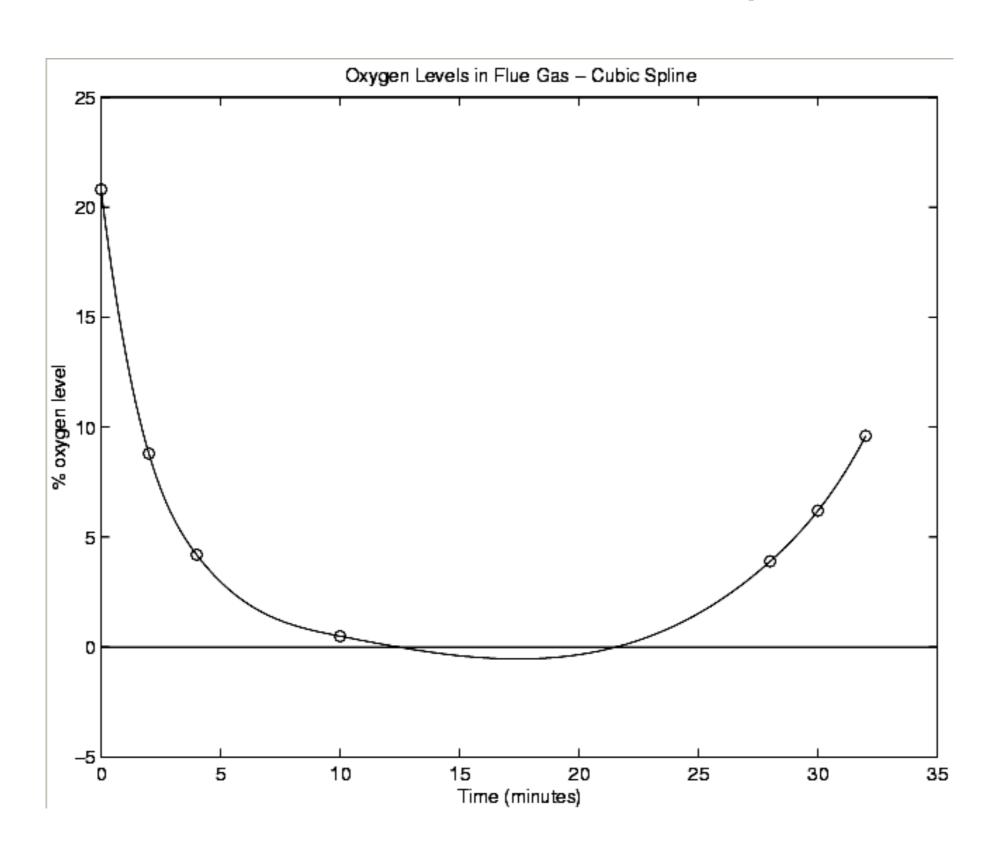
$$f(x) = v_0(1 - x) + v_1 x$$



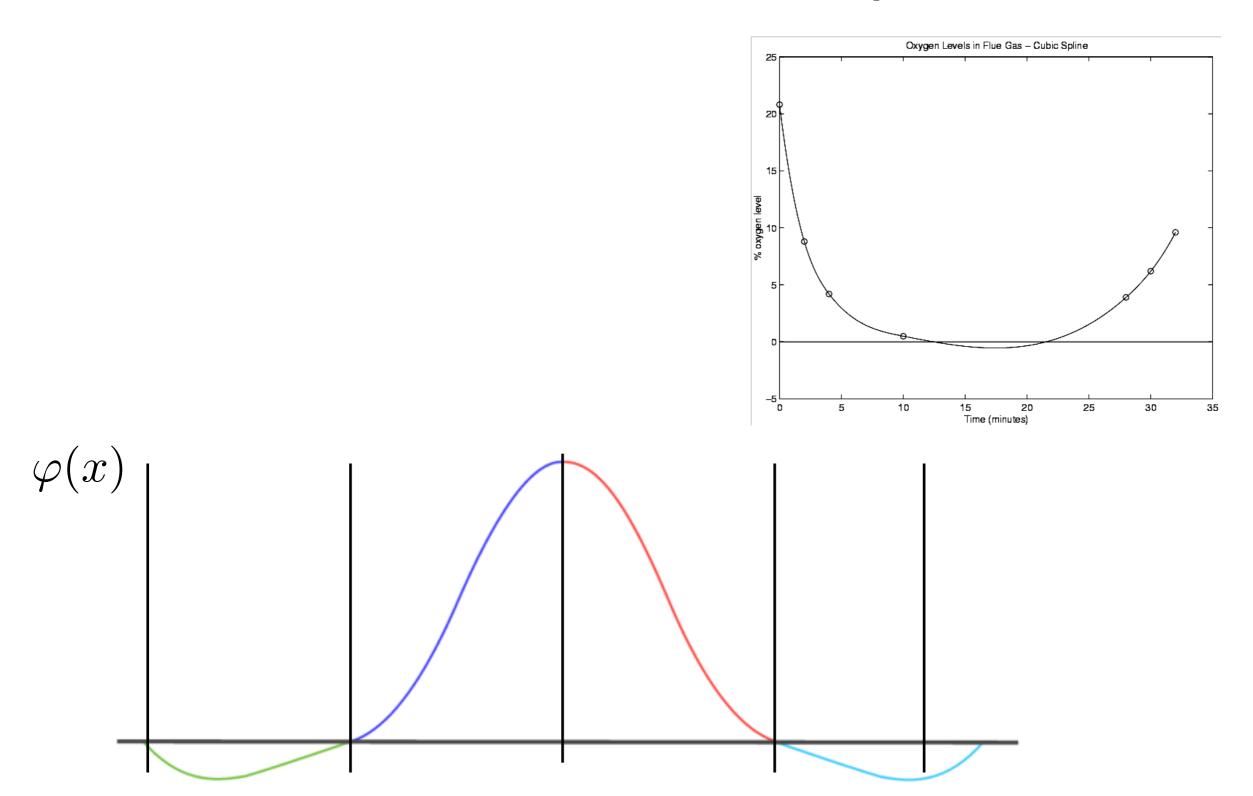
Cubic Interpolation



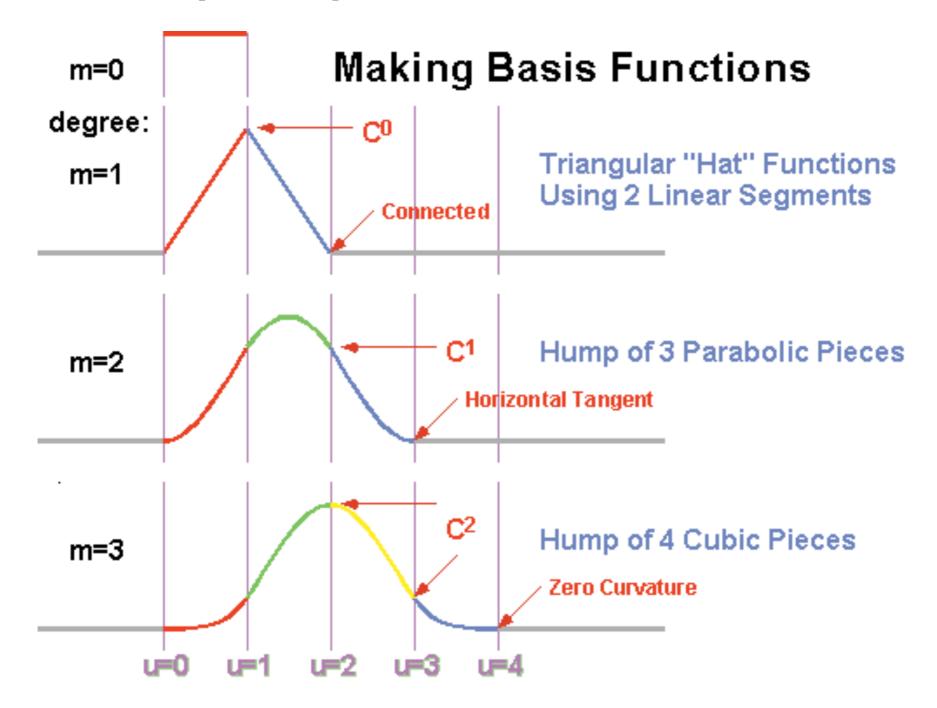
What is "Correct" Interpolation?



What is "Correct" Interpolation?



Cubic, (etc) Approximation



http://www.cs.berkeley.edu/~sequin/CS284/IMGS/makingbasisfunctions.gif

Why go through this trouble?

- Why not just define these functions "procedurally"?
 - At the end of the day they're just arrays and if statements, after all

Because we can do math on those sums more easily

$$f(x) = \sum_{i} c_i \varphi(x - i)$$

$$\frac{df}{dx}(x) = \frac{d}{dx} \sum_{i} c_i \varphi(x - i)$$

$$f(x) = \sum_{i} c_i \varphi(x - i)$$

$$\frac{df}{dx}(x) = \sum_{i} \frac{d}{dx} c_i \varphi(x - i)$$

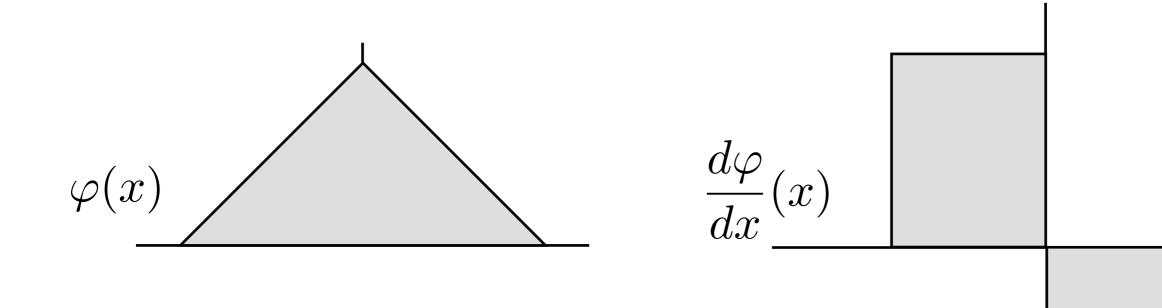
$$f(x) = \sum_{i} c_i \varphi(x - i)$$

$$\frac{df}{dx}(x) = \sum_{i} c_i \frac{d\varphi}{dx}(x - i)$$

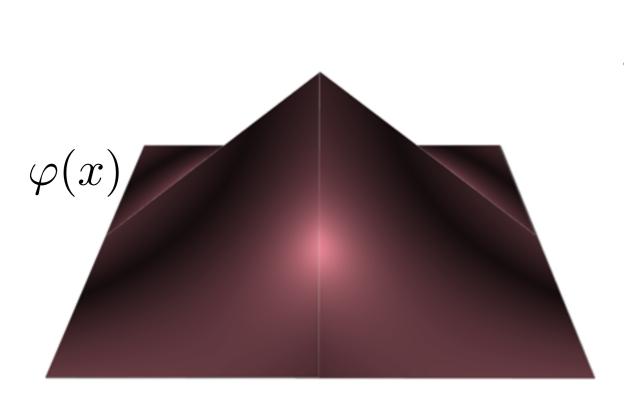
$$f(x) = \sum_{i} c_{i} \varphi(x - i)$$

$$\frac{df}{dx}(x) = \sum_{i} c_{i} \frac{d\varphi}{dx}(x - i)$$

 Derivatives are just another type of function space where all we do is change the "simple function"



Multidimensional functions



$$f(x,y) = \begin{cases} v_{00} & (1-x) & (1-y) & + \\ v_{10} & (x) & (1-y) & + \\ v_{01} & (1-x) & (y) & + \\ v_{11} & (x) & (y) & + \end{cases}$$

Basis function for bilinear interpolation

$$\nabla f(\vec{x}) = \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \end{bmatrix}$$

But what is that?

First we remember our friend the Taylor series:

$$f\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = f\left(\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]\right) + \nabla f\left(\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]\right)^T \left[\begin{array}{c} x - x_0 \\ y - y_0 \end{array}\right] + \varepsilon$$

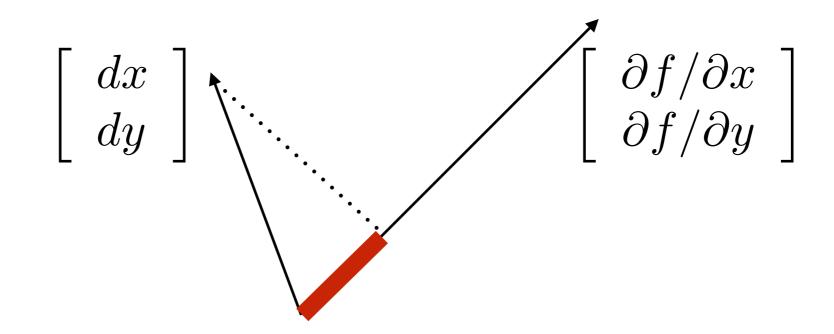
Now we ask ourselves: if we move a little away from (x_0, y_0) , in what direction does f grow the fastest?

$$f\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = f\left(\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]\right) + \nabla f\left(\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]\right)^T \left[\begin{array}{c} x - x_0 \\ y - y_0 \end{array}\right] + \varepsilon$$

$$\nabla f \left(\left[\begin{array}{c} x_0 \\ y_0 \end{array} \right] \right)^T \left[\begin{array}{c} dx \\ dy \end{array} \right]$$

$$= \left[\begin{array}{c} \partial f/\partial x \\ \partial f/\partial y \end{array} \right]^T \left[\begin{array}{c} dx \\ dy \end{array} \right]$$

$$\max \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \end{bmatrix}^T \begin{bmatrix} dx \\ dy \end{bmatrix}$$



$$\max \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}^T \begin{bmatrix} dx \\ dy \end{bmatrix} \qquad \begin{bmatrix} dx \\ dy \end{bmatrix} = \frac{\nabla f}{|\nabla f|}$$

$$\begin{bmatrix} dx \\ dy \end{bmatrix} \dot{\cdots} \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \end{bmatrix}$$

$$\max \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}^T \begin{bmatrix} \frac{dx}{dy} \end{bmatrix} \qquad \begin{bmatrix} \frac{dx}{dy} \end{bmatrix} = \frac{\nabla f}{|\nabla f|}$$

The gradient points in the direction of greatest increase and its length is the rate of greatest increase

Visualizing Scalar Fields

Colormapping

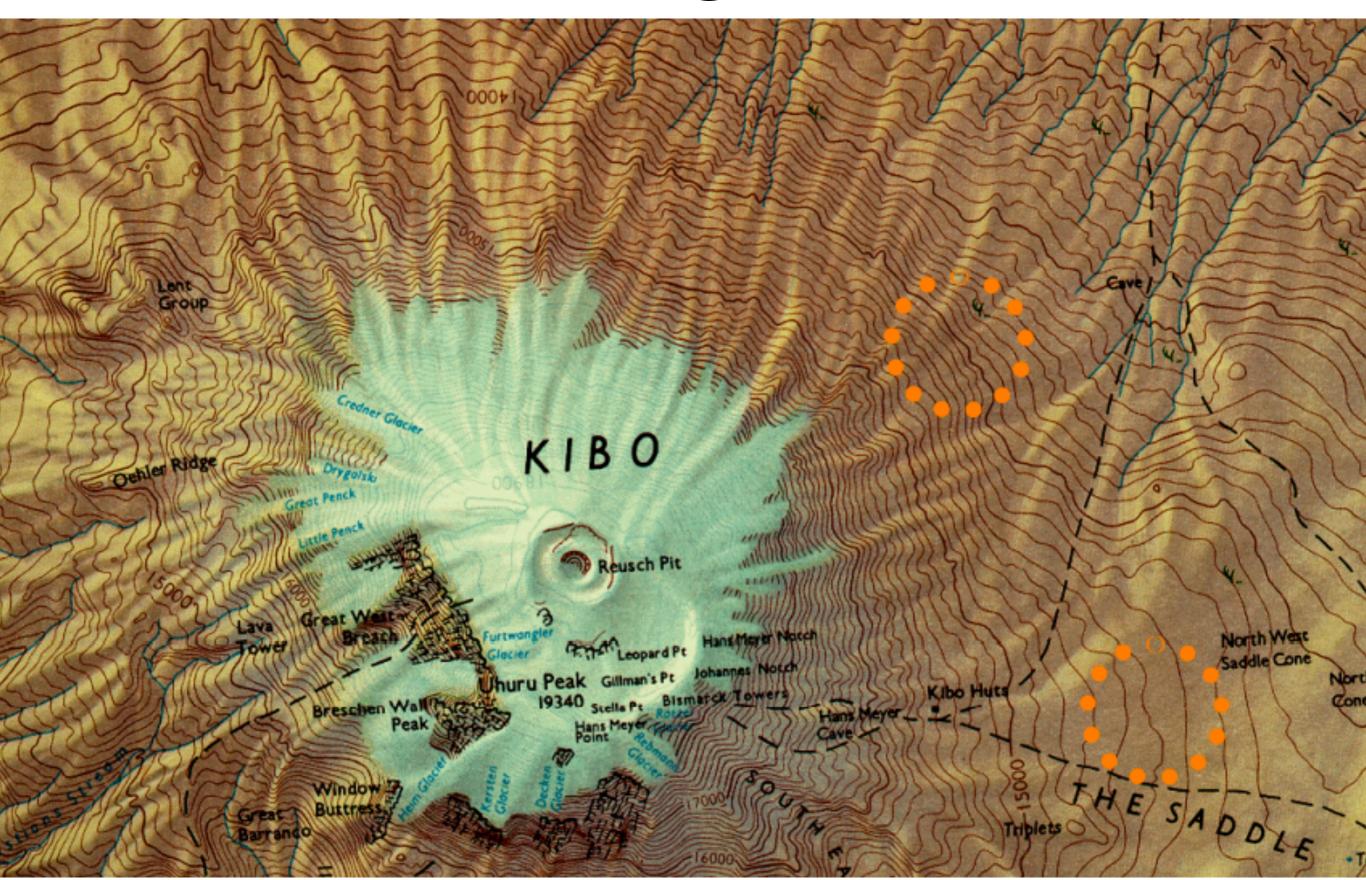
- "Default" strategy:
 - create color scale using the range of the function as the domain of the scale
 - create a position scale to convert from the domain of the function to positions on the screen
 - set the pixel color according to the scale

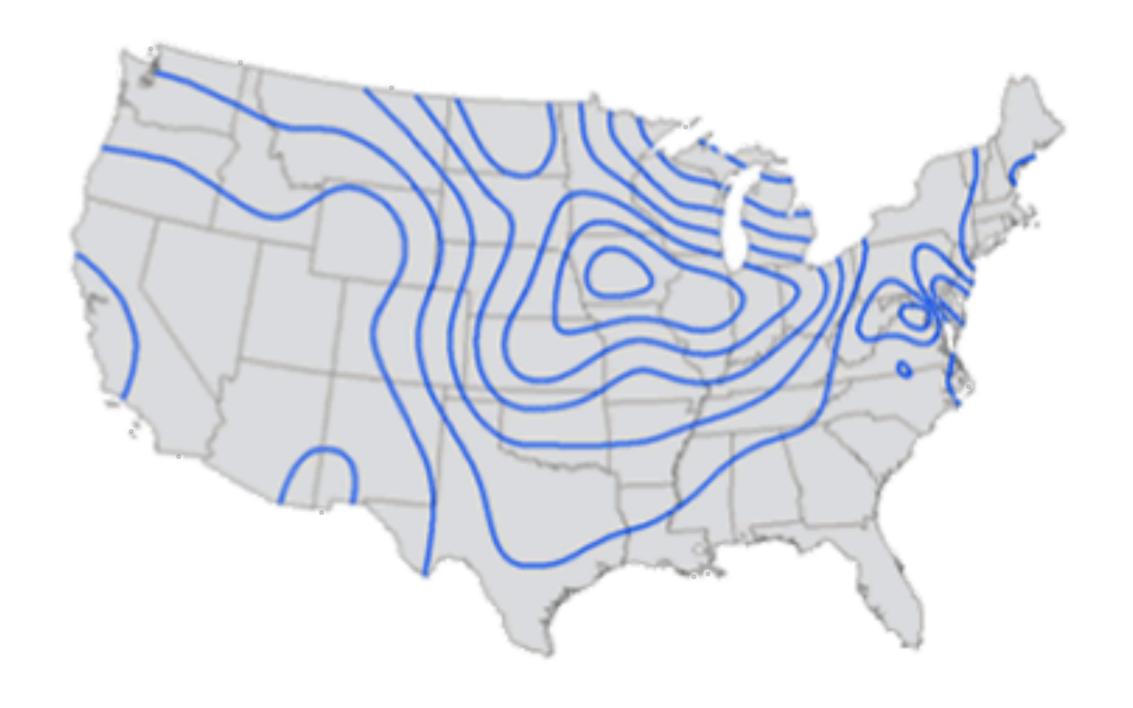
Colormapping guidelines apply!

Applies to "abstract" spaces too



http://www.nytimes.com/interactive/2015/04/16/upshot/marriage-penalty-couples-income.html?abt=0002&abg=0



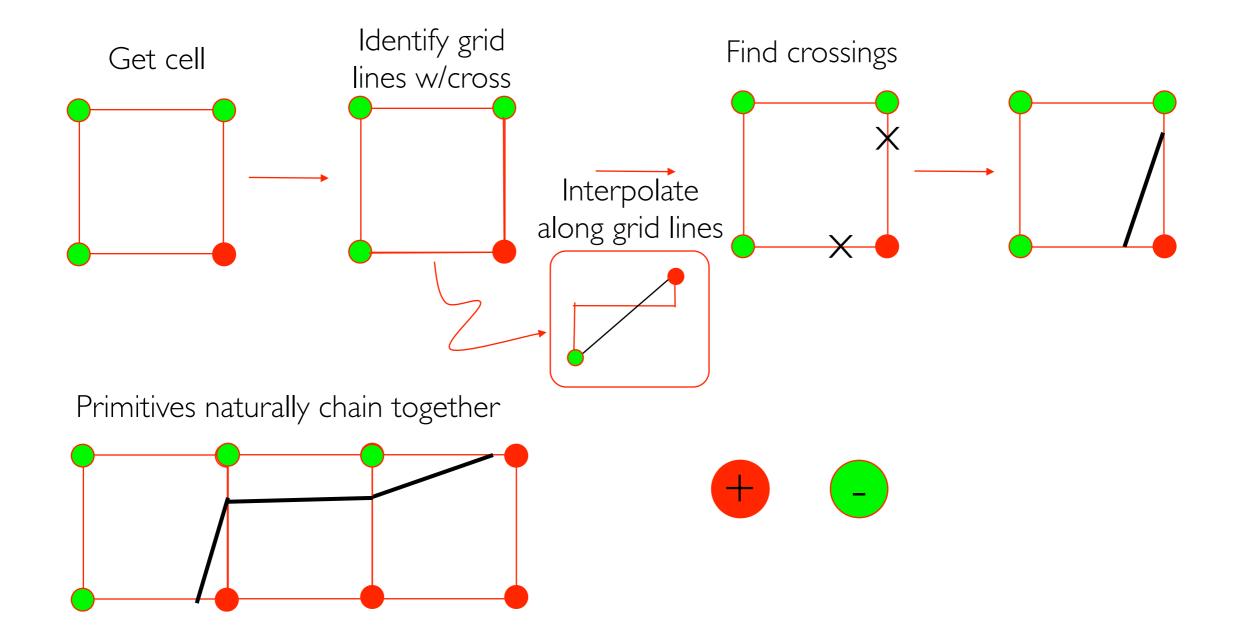


http://ryanhill1.blogspot.com/2011/07/isoline-map.html

How do we compute them?

Approach to Contouring in 2D

 Contour must cross every grid line connecting two grid points of opposite sign

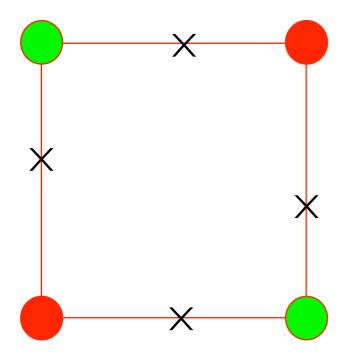


Cases

Case	Polarity	Rotation	Total	
No Crossings	x2		2	
Singlet	x2	x4	8	(x2 for polarity)
Double adjacent	x2	x2 (4)	4	
Double Opposite	x2	x1 (2)	2	
			16 = 24	

Ambiguities

How to form lines?



Ambiguities

• Right or Wrong?

