CURRENT TEMPERATURES 치몬 Spatial Data

Recap

- So far, we've studied methods to determine the position of a data point on the screen
- graph drawing, treemaps, scatterplots, PCA
- However, some datasets come with very good positional information
- Wind maps, weather simulations, CT scans

How do we represent spatial data?

- In the real world, there's infinitely many data points in a weather map
- In a computer, we only have finite memory and finite time
- How do we solve this problem?

Finite-dimensional function spaces

- Some functions can be represented succinctly

Finite-dimensional function spaces

- Some functions can be represented succinctly

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

- Build complicated functions by sums of shifted, scaled versions of these simple functions

Finite-dimensional function spaces

Build complicated functions by sums of shifted,
scaled versions of these simple functions

Finite-dimensional function spaces

Build complicated functions by sums of shifted, scaled versions of these simple functions

Example: nearest-neighbor interpolation

-2
0
1
2

Example: linear interpolation

Alternative formulation:
$f(x)=v_{0}(1-x)+v_{1} x$

Cubic Interpolation

What is "Correct" Interpolation?

What is "Correct" Interpolation?

Cubic, (etc) Approximation

http://www.cs.berkeley.edu/~sequin/CS284/IMGS/ makingbasisfunctions.gif

Why go through this trouble?

- Why not just define these functions "procedurally"?
- At the end of the day they're just arrays and if statements, after all
- Because we can do math on those sums more easily

Derivatives of finitedimensional function spaces

$$
\begin{aligned}
f(x) & =\sum_{i} c_{i} \varphi(x-i) \\
\frac{d f}{d x}(x) & =\frac{d}{d x} \sum_{i} c_{i} \varphi(x-i)
\end{aligned}
$$

Derivatives of finitedimensional function spaces

$$
\begin{aligned}
f(x) & =\sum_{i} c_{i} \varphi(x-i) \\
\frac{d f}{d x}(x) & =\sum_{i} \frac{d}{d x} c_{i} \varphi(x-i)
\end{aligned}
$$

Derivatives of finitedimensional function spaces

$$
\begin{aligned}
f(x) & =\sum_{i} c_{i} \varphi(x-i) \\
\frac{d f}{d x}(x) & =\sum_{i} c_{i} \frac{d \varphi}{d x}(x-i)
\end{aligned}
$$

Derivatives of finitedimensional function spaces

$$
\begin{aligned}
f(x) & =\sum_{i} c_{i} \varphi(x-i) \\
\frac{d f}{d x}(x) & =\sum_{i} c_{i} \frac{d \varphi}{d x}(x-i)
\end{aligned}
$$

- Derivatives are just another type of function space where all we do is change the "simple function"

Derivatives of finitedimensional function spaces

Multidimensional functions

Basis function
for bilinear interpolation

Interlude: The Gradient of a Function

$$
\nabla f(\vec{x})=\left[\begin{array}{l}
\partial f / \partial x \\
\partial f / \partial y
\end{array}\right]
$$

But what is that?

Interlude: The Gradient of a Function

First we remember our friend the Taylor series:

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\right)+\nabla f\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\right)^{T}\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]+\varepsilon
$$

Now we ask ourselves:
if we move a little away from (x_{0}, y_{0}), in what direction does f grow the fastest?

Interlude: The Gradient of a Function

$$
\begin{gathered}
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\right)+\nabla f\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\right)^{T}\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]+\varepsilon \\
\nabla f\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\right)^{T}\left[\begin{array}{l}
d x \\
d y
\end{array}\right] \\
=\left[\begin{array}{l}
\partial f / \partial x \\
\partial f / \partial y
\end{array}\right]^{T}\left[\begin{array}{l}
d x \\
d y
\end{array}\right]
\end{gathered}
$$

Interlude: The Gradient of a Function

$$
\max \left[\begin{array}{l}
\partial f / \partial x \\
\partial f / \partial y
\end{array}\right]^{T}\left[\begin{array}{l}
d x \\
d y
\end{array}\right]
$$

Interlude: The Gradient of a Function

$\max \left[\begin{array}{l}\partial f / \partial x \\ \partial f / \partial y\end{array}\right]^{T}\left[\begin{array}{l}d x \\ d y\end{array}\right] \quad\left[\begin{array}{l}d x \\ d y\end{array}\right]=\frac{\nabla f}{|\nabla f|}$

$$
\left[\begin{array}{l}
d x \\
d y
\end{array}\right] \quad \begin{array}{ll}
\ddots & \\
\ddots & \\
& \ddots
\end{array} \quad\left[\begin{array}{l}
\partial f / \partial x \\
\partial f / \partial y
\end{array}\right]
$$

Interlude: The Gradient of a

Function

$\max \left[\begin{array}{l}\partial f / \partial x \\ \partial f / \partial y\end{array}\right]^{T}\left[\begin{array}{l}d x \\ d y\end{array}\right] \quad\left[\begin{array}{c}d x \\ d y\end{array}\right]=\frac{\nabla f}{|\nabla f|}$

The gradient points in the direction of greatest increase and its length is the rate of greatest increase

Visualizing Scalar Fields

Colormapping

. "Default" strategy:

- create color scale using the range of the function as the domain of the scale
- create a position scale to convert from the domain of the function to positions on the screen

- set the pixel color according to the scale

Colormapping guidelines apply!

Applies to "abstract"
 spaces too

http://www.nytimes.com/interactive/2015/04/16/upshot/ marriage-penalty-couples-income.html?abt=0002\&abg=0

Contouring: isolines

Contouring: isolines

http://ryanhill1.blogspot.com/2011/07/isoline-map.html

Contouring: isolines

How do we compute them?

Approach to Contouring in 2D

- Contour must cross every grid line connecting two grid points of opposite sign

Primitives naturally chain together

Cases

Ambiguities

- How to form lines?

Ambiguities

- Right or Wrong?

Contouring: isolines

