Spatial Data: Dimensionality Reduction CS444
 Techniques, Lecture 3

In this subfield, we think of a data point as a vector in $R^{\wedge} n$

(what could possibly go wrong?)

"Linear" dimensionality reduction:

Reduction is achieved by is a single matrix for every point.

Regular Scatterplots

- Every data point is a vector:

$$
\left[\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

- Every scatterplot is produced by a very simple matrix:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

What about other matrices?

Grand Tour (Asimov, 1985)

http://cscheid.github.io/lux/demos/tour/tour.html

Is there a best matrix?

How do we think about that?

Linear Algebra review

- Vectors
- Inner Products
- Lengths
- Angles
- Bases
- Linear Transformations and Eigenvectors

Principal Component Analysis

Principal Component Analysis

- Algorithm:
- Given data set as matrix X in $R^{\wedge}(d \times n)$,
- Center matrix: $\tilde{X}=X\left(I-\frac{\overrightarrow{1}}{n} \overrightarrow{1}^{T}\right)=X H$
- Compute eigendecomposition of $\tilde{X}^{T} \tilde{X}$
- $\tilde{X}^{T} \tilde{X}=U \Sigma U^{T}$
- The principal components are the first few rows of

$$
U \Sigma^{1 / 2}
$$

What if we don't have coordinates, but distances?

"Classical" Multidimensional Scaling

| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | BOST | NY | DC | MIAM | CHIC | SEAT | SF | LA | DENV |
| | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| 1 | BOSTON | 0 | 206 | 429 | 1504 | 963 | 2976 | 3095 | 2979 | 1949 |
| 2 | NY | 206 | 0 | 233 | 1308 | 802 | 2815 | 2934 | 2786 | 1771 |
| 3 | DC | 429 | 233 | 0 | 1075 | 671 | 2684 | 2799 | 2631 | 1616 |
| 4 | MIAMI | 1504 | 1308 | 1075 | 0 | 1329 | 3273 | 3053 | 2687 | 2037 |
| 5 | CHICAGO | 963 | 802 | 671 | 1329 | 0 | 2013 | 2142 | 2054 | 996 |
| 6 | SEATTLE | 2976 | 2815 | 2684 | 3273 | 2013 | 0 | 808 | 1131 | 1307 |
| 7 | SF | 3095 | 2934 | 2799 | 3053 | 2142 | 808 | 0 | 379 | 1235 |
| 8 | LA | 2979 | 2786 | 2631 | 2687 | 2054 | 1131 | 379 | 0 | 1059 |
| 9 | DENVER | 1949 | 1771 | 1616 | 2037 | 996 | 1307 | 1235 | 1059 | 0 |

(a)

(b)

(c)
http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/ lecture11.pdf

Borg and Groenen, Modern Multidimensional Scaling

"Classical" Multidimensional Scaling

- Algorithm:
- Given $D_{i j}=\left|X_{i}-X_{j}\right|^{2}$, create $B=-\frac{1}{2} H D H^{T}$
- PCA of B is equal to the PCA of X
- Huh?!

"Nonlinear" dimensionality reduction

(ie: projection is not a matrix operation)

Data might have "highorder" structure

http://isomap.stanford.edu/Supplemental Fig.pdf

We might want to minimize something else besides "difference between squared distances"

t-SNE: difference between neighbor ordering

Why not distances?

The curse of Dimensionality

- High dimensional space looks nothing like lowdimensional space
- Most distances become meaningless

