
Spatial Data: 
Dimensionality Reduction

CS444

Techniques, Lecture 3



In this subfield, we think 
of a data point as a 

vector in R^n

(what could possibly 
go wrong?)



“Linear” dimensionality 
reduction:

Reduction is achieved by  
is a single matrix for 

every point.



Regular Scatterplots
• Every data point is a vector:


• Every scatterplot is produced 
by a very simple matrix:
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What about other matrices?



Grand Tour (Asimov, 1985)

http://cscheid.github.io/lux/demos/tour/tour.html



Is there a best matrix?


How do we think about that?



Linear Algebra review
• Vectors


• Inner Products


• Lengths


• Angles


• Bases


• Linear Transformations and Eigenvectors



Principal Component Analysis
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Principal Component Analysis
• Algorithm:


• Given data set as matrix X in R^(d x n),


• Center matrix: 


• Compute eigendecomposition of


•  


• The principal components are the first few rows of 
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What if we don’t have 
coordinates, but distances?

“Classical” Multidimensional 
Scaling



http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/
lecture11.pdf



Borg and Groenen, Modern Multidimensional Scaling



Borg and Groenen, Modern Multidimensional Scaling



“Classical” Multidimensional 
Scaling

• Algorithm:


• Given                              , create 


• PCA of B is equal to the PCA of X


• Huh?!

Dij = |Xi �Xj |2 B = �1
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“Nonlinear” 
dimensionality 

reduction


(ie: projection is not a 
matrix operation)



Data might have “high-
order” structure



http://isomap.stanford.edu/Supplemental_Fig.pdf

http://isomap.stanford.edu/Supplemental_Fig.pdf


We might want to minimize 
something else besides “difference 

between squared distances”

t-SNE: difference between neighbor ordering

Why not distances?



The curse of 

Dimensionality

• High dimensional space looks nothing like low-
dimensional space


• Most distances become meaningless


