Spatial Data: Dimensionality Reduction

CS444 Techniques, Lecture 3 In this subfield, we think of a data point as a vector in R^n

(what could possibly go wrong?)

"Linear" dimensionality reduction:

Reduction is achieved by is a single matrix for every point.

Regular Scatterplots

Every data point is a vector:

•

 $egin{array}{ccc} v_0 & & \ v_1 & & \ v_2 & & \ v_3 & \end{array}$

 Every scatterplot is produced by a very simple matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

What about other matrices?

Grand Tour (Asimov, 1985)

http://cscheid.github.io/lux/demos/tour/tour.html

Is there a best matrix?

How do we think about that?

Linear Algebra review

- Vectors
- Inner Products
 - · Lengths
 - Angles
- Bases
- Linear Transformations and Eigenvectors

Principal Component Analysis

Principal Component Analysis

- Algorithm:
 - Given data set as matrix X in R^(d x n),

• Center matrix:
$$\tilde{X} = X(I - \frac{\vec{1}}{n}\vec{1}^T) = XH$$

- Compute eigendecomposition of $\tilde{X}^T \tilde{X}$
 - $\tilde{X}^T \tilde{X} = U \Sigma U^T$
- The principal components are the first few rows of $U\Sigma^{1/2}$

What if we don't have coordinates, but distances?

"Classical" Multidimensional Scaling

		1	2	3	4	5	6	7	8	9
		BOST	NY	DC	MIAM	CHIC	SEAT	SF	LA	DENV
1	BOSTON	0	206	429	1504	963	2976	3095	2979	1949
2	NY	206	0	233	1308	802	2815	2934	2786	1771
3	DC	429	233	0	1075	671	2684	2799	2631	1616
4	MIAMI	1504	1308	1075	0	1329	3273	3053	2687	2037
5	CHICAGO	963	802	671	1329	0	2013	2142	2054	996
6	SEATTLE	2976	2815	2684	3273	2013	0	808	1131	1307
7	SF	3095	2934	2799	3053	2142	808	0	379	1235
8	LA	2979	2786	2631	2687	2054	1131	379	0	1059
9	DENVER	1949	1771	1616	2037	996	1307	1235	1059	0

http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/ lecture11.pdf

torse coue	-	00	D	0	10	E	F	G	H	I	J	K	LN	11	I O	P	Q	R	S	Т	U	VV	V X	Y	Z	1	2	3	4	5 €	5 7	8	9 0	1	-
	P	52	18	0	13	3	14	10	13	46	5 2	2	3 2	5 3	4 6	6	9	35	23	6 ;	37 1	13 1	7 12	2 7	3	2	7	5	5	8 6	6 5	6	2 3	A	95
	C	4	20	87	17	5	28	17	21	5	19 3	14 4	0	6 1	0 12	222	25	16	18	2	18 3	34	88	1 30	42	12	17	14	40 3	32 7	4 43	17	4	4 B	5
	D	8	20	17	11	4 7	29	13	7	11	19 2	4 3	5 1	4	3 5	51	34	24	14	6	6	11 1	4 3	2 82	2 38	13	15	31	14	10 3	0 28	\$ 24	18 1	2 C	0
	F	6	12	14	00	07	23	40	36	9	13 8	\$1 5	6 1	8	7 5	27	9	45	29	6	17 :	20 2	27 4	0 15	5 33	3	9	6	11	9 1	9 8	3 10	5	6 D	6
-	F	4	10	20	10	91	200	4	P	17	1	0 -	6	4	4 2	5 1	5	10	7	67	3	3	2	5 (5 5	4	3	5	3	5	2 4	4 2	3	3 E	II
	E I	9 1	10	07	19	2	90	10	29	5	33 1	6 5	0	7	6 10) 42	12	35	14	2	21	27 :	25 1	9 27	7 13	8	16	47	25	26 2	24 2	1 5	5	5 F	121
-	G	9.	10	27	38	1	14	90	6	5	22 3	33 1	6 1	4 1	3 63	2 52	23	21	5	3	15	14 :	32 2	1 23	3 39	15	14	5	10	4 1	10 1	7 23	20 1	11 G	-
	n	3.	15	23	25	9	32	8	87	10	10	9 2	9	5	8 8	8 14	8	17	37	4	36	59	9 3	3 14	4 11	3	9	15	43	70 3	35 1	7 4	3	3 H	ğ
1000	1	54	7	7	13	10	8	6	12	93	3	5 1	6 1	3 3	0	7 3	5	19	35	16	10	5	8	2 4	5 7	2	5	8	9	6	8	5 2	4	5 I	10
	J	7	9	38	9	2	24	18	5	4	85 2	22 3	51	8	3 2	1 63	47	11	2	7	9	9	9 2	2 3	2 28	67	66	33	15	71	11 2	8 29	26 2	23 J	0
	K	5 :	24	38	73	1	17	25	11	5	27 9	91 3	33 1	0 1	2 3	1 14	31	22	2	2	23	17 :	33 6	3 10	6 18	5	9	17	8	81	18 1	4 13	5	6 K	E
	L	2 (69	43	45	10	24	12	26	9	30 2	27 8	36	6	2 9	9 37	36	28	12	5	16	19 :	20 3	1 2	5 59	12	13	17	15	26 2	29 3	6 16	7	3 L	-
-	M	24	12	5	14	7	17	29	8	8	11 2	23	8 9	66	2 1	1 10) 15	20	7	9	13	4 :	21	9 1	8 8	5	7	6	6	5	71	1 7	10	4 M	ŝ
	N	31	4	13	30	8	12	10	16	13	3 1	16	8 5	99	3 4	5 9) 5	28	12	10	16	4	12	4 10	6 11	. 5	2	3	4	4	6	2 2	10	2 N	Ē
	0	7	7	20	6	5	9	76	7	2	39 2	26 1	10	4	8 8	6 37	35	10	3	-4	11	14 :	25 3	5 2	7 27	19	17	7	7	61	18 1	4 11	20 1	20	
	P	5	22	33	12	5	36	22	12	3	78	14 4	16	5	6 2	1 83	3 43	23	9	4	12	19	19 1	9 4	1 30	34	44	24	11	15 1	72	4 23	25 1	3 P	
	Q	8	20	38	11	4	15	10	5	2	27 :	23 2	26	7	6 22	2 51	91	11	2	3	6	14	12 3	7 5	0 63	34	32	17	12	92	17 41	0 58	37 2	4 0	
	R	13	14	16	23	5	34	26	15	7	12 :	21 3	33 1	4 1	2 12	2 29) 8	87	16	2	23	23 (52 1	4 1:	2 13	7	10	13	4	71	2	1 9	1	2 R	
	S	17	24	5	30	11	26	5	59	16	3	13 1	10	5 1	7 (6 6	; 3	18	96	9	56	24	12 1	0 (5 7	8	2	2	15	28	9 1	0 0	14	e T	
	T	13	10	1	5	46	3	6	6	14	6	14	7	6	5 (6 11	4	4	7	96	8	5	4	2 :	2 6	5	5	3	3	3	8	0 7	14	2 11	
_	Ū	14	29	12	32	4	32	11	34	21	7	44 3	32 1	1 1	3 (6 20) 12	40	51	6	93	57 :	34 1	7 5	9 11	0	0	10	34	10	9 2	5 10	1	5 V	
	v	5	17	24	16	9	29	6	39	5	11 :	26 4	13	4	1 1	9 17	10	17	11	6	32	92	17 5	7 3	5 10	10	14	28	18	44 J	0 11	6	3	7 W	
	w	9	21	30	22	9	36	25	15	4	25 :	29 1	18 1	5	6 2	6 20) 25	61	12	4	19	20 1	36 2	2 2	5 22	10	22	19	10	16 5	7 24	1 16	17	6 X	
	x	7	64	45	19	3	28	11	6	1	35	50 4	42 1	0	8 2	4 32	2 61	10	12	3	12	17 :	21 9	1 48	5 20	12	20	40	15	11 2	6 25	2 33	23 1	6 Y	
	1÷	ó	23	62	15	4	26	22	9	1	30	12	14	5	6 1	4 30) 52	5	7	4	6	13 :	21 4	4 81	5 23	20	44	40	10	10 2	5 66	5 47	15 1	5 Z	
	1 77	3	AR	45	18	2	22	17	10	7	23	21 4	51 1	1	2 1	5 59) 72	: 14	4	3	9	11	12 3	0 42	181	10	62	13	8	10 -	8 19	9 32	57 5	5 1	
	4	0	40	10	10	3	5	13	4	2	29	5	14	9	7 1	4 30) 28	9	- 4	2	3	12	14 1	7 13	9 22	69	80	54	20	5 1	4 20	0 21	16 1	1 2	
	1	2	14	10	0	4	20	13	3	25	26	9	14	2	3 1	7 37	7 28	6	5	3	6	10	11 1	7 31	13	102	69	86	31	23 4	1 10	6 17	81	0 3	
	2	1	14	22	5	4	32	6	12	2	23	6	13	5	2	5 37	7 19	9	7	6	4	16	02	2 2	1 1 0	10	26	44	89	42 4	4 3	2 10	3	3 4	
	3	3	8	21	0	4	25	14	16	7	21	13	19	3	3	2 17	7 29	11	9	3	17	55	83	2	a 10	114	10	30	60	90.4	2 2	4 10	6	5 5	
	4	6	19	19	12	0	45	A	67	7	14	4	41	2	0	4 13	3 7	9	27	2	14	45	74	0 1	0 10	15	14	26	24	17 8	18 6	9 14	51	4 6	
	5	8	45	15	14		40	4	14	2	11	11 :	27	6	2	7 16	5 30) 11	14	3	12	30	9 5	0 3	0 39	10	20	18	15	12.6	1 8	5 70	20 1	3 7	
	6	7	80	30	17	4	23	4	14	6	24	13	32	7	6	7 36	5 39) 12	6	2	3	13	93	0 3	0 00	40	20	16	16	9 3	30 6	0 89	61 2	6 8	
	7	6	33	22	14	5	25	0	4	0	22	10	14	3	6 1	4 12	2 45	5 2	6	4	6	7	5 2	43	5 50	42	20	10	12	4 1	11 4	2 56	91 7	8 9	
	8	3	23	40	6	3	15	15	0	6	30	6	7 1	6 1	1 1	0 31	1 32	2 5	6	7	6	3	81	12	1 24	1 51	39	0	11	5 5	22.1	7 52	81 9	4	
	9	3	14	23	3	1	6	14	5	2	30	0	0	0	20	5 2	1 20) 2	3	4	5	3	21	21	5 20	1 50	20	9	11	0.	-			-	

Borg and Groenen, Modern Multidimensional Scaling

Borg and Groenen, Modern Multidimensional Scaling

"Classical" Multidimensional Scaling

- Algorithm:
- Given $D_{ij} = |X_i X_j|^2$, create $B = -\frac{1}{2}HDH^T$
- PCA of B is equal to the PCA of X
 - Huh?!

"Nonlinear" dimensionality reduction

(ie: projection is not a matrix operation)

Data might have "highorder" structure

Wrist rotation

http://isomap.stanford.edu/Supplemental_Fig.pdf

We might want to minimize something else besides "difference between squared distances"

t-SNE: difference between neighbor ordering

Why not distances?

The curse of Dimensionality

- High dimensional space looks nothing like lowdimensional space
 - Most distances become meaningless