An Algebraic Process for Visualization Design

Carlos Scheidegger, Gordon Kindlmann

VIS 2014

Test Suites for Visualization

- How do we know that a visualization is doing the right thing?
 - What is even the right thing?

Property-Based Testing

 Instead of testing one case, find a property that your code should obey, and generate test cases automatically

EVALUATION

Evaluation through User Studies

- Define tasks, run user study, measure variable, do stats
 - Very hard to do right, time-consuming, expensive
 - and even harder for conclusions to generalize

 Whole courses are taught entirely about this - we're not going to do that

"Evaluation through Imagination"

- Instead, we are going to use thought experiments:
 - What if the input were different what would this change cause?
 - What if the picture were different how could the input have been different?
- The answers tell us a lot about the visualization
 - Not as good as a good user study, but practical

We want a theory to explain, critique and suggest visualizations

$$D \xrightarrow{r_1} R \xrightarrow{v} V$$

$$\alpha \downarrow \qquad \qquad \downarrow \omega$$

$$D \xrightarrow{r_2} R \xrightarrow{v} V$$
Data Representation Visual

Equation 1
$$v \circ r_2 \circ \alpha = \omega \circ v \circ r_1$$

Failure of The Invariance Principle

Success of The Invariance Principle

Failure of The Unambiguity Principle

Success of The Unambiguity Principle

Failure of The Correspondence Principle

Success of The Correspondence Principle

"colormapping, then opposing" differs from "negating, then colormapping"

(a) Hue+Luminance colormap

"colormapping, then opposing" is equal to

"negating, then colormapping"

(b) Diverging colormap

The algebraic process:

Pick spaces of interest
 Pick transformations of interest
 Study what happens on the other side

(We want a theory to explain, critique and suggest visualizations)

Interlude: Cleveland and McGill

Position: Good

Length: Good

Angle: Not so good

Saturation: Not so good

Case Study:

Employment rates across countries and genders

Original visualizations by Jonathan Schwabish and NYT's Catherine Rampell

How do we use this?

$$D \xrightarrow{r_1} R \xrightarrow{v} V$$

$$\alpha \downarrow \qquad \qquad \downarrow \omega$$

$$D \xrightarrow{r_2} R \xrightarrow{v} V$$

- 1. α_1 : What if the rate was different for just one gender? Either $x'_W = x_W + k$ and $x'_M = x_M$, or, $x'_M = x_M + k$ and $x'_W = x_W$.
- 2. α_2 : What if the rates for men and women were switched? $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap in the rate was different? $x'_M = x_M + k$ and $x'_W = x_W k$.
- 4. α_4 : What if the overall rate was different (the same gender gap)? $x'_M = x_M + k$ and $x'_W = x_W + k$.

- 1. α_1 : What if the rate was different Either $x'_W = x_W + k$ and x'_M
- 2. α_2 : What if the rates for me $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap $x_M' = x_M + k$ and $x_W' = x_W k$
- 4. α_4 : What if the overall rate $x'_M = x_M + k$ and $x'_W = x_W k$

- 1. α_1 : What if the rate was different Either $x'_W = x_W + k$ and x'_M
- 2. α_2 : What if the rates for me $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap $x'_M = x_M + k$ and $x'_W = x_W k$
- 4. α_4 : What if the overall rate $x_M' = x_M + k$ and $x_W' = x_W k$

- 1. α_1 : What if the rate was different Either $x'_W = x_W + k$ and x'_M
- 2. α_2 : What if the rates for me $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap $x'_M = x_M + k$ and $x'_W = x_W k$
- 4. α_4 : What if the overall rate $x_M' = x_M + k$ and $x_W' = x_W k$

20

15

10

5

0

5

10 15 20 % of men in senior mgmt.

USA

- 1. α_1 : What if the rate was different Either $x'_W = x_W + k$ and x'_M
- 2. α_2 : What if the rates for me $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap $x'_M = x_M + k$ and $x'_W = x_W k$
- 4. α_4 : What if the overall rate $x'_M = x_M + k$ and $x'_W = x_W k$

% of women in senior mgmt.

- 1. α_1 : What if the rate was different Either $x'_W = x_W + k$ and x'_M
- 2. α_2 : What if the rates for me $x'_M = x_W$ and $x'_W = x_M$.
- 3. α_3 : What if the gender gap $x'_M = x_M + k$ and $x'_W = x_W k$
- 4. α_4 : What if the overall rate $x'_M = x_M + k$ and $x'_W = x_W k$

Summary

- To evaluate a visualization:
 - take one instance of the data being visualized, and think about how the input could have been different
 - What this would do to the vis? Is this a good channel? Is it separable?
 - Conversely, think of the good channels: position, length, luminance - do changes of these attributes correspond to sensible changes in the data?

(Extras)

