## An Algebraic Process for Visualization Design

Carlos Scheidegger, Gordon Kindlmann

VIS 2014

### Test Suites for Visualization

- How do we know that a visualization is doing the right thing?
  - What is even the right thing?

## **Property-Based Testing**

 Instead of testing one case, find a property that your code should obey, and generate test cases automatically



## Evaluation through User Studies

- Define tasks, run user study, measure variable, do stats
  - Very hard to do right, time-consuming, expensive
  - and even harder for conclusions to generalize

 Whole courses are taught entirely about this - we're not going to do that

## "Evaluation through Imagination"

- Instead, we are going to use **thought experiments**:
  - What if the input were different what would this change cause?
  - What if the picture were different how could the input have been different?
- The answers tell us a lot about the visualization
  - Not as good as a good user study, but practical







# We want a theory to explain, critique and suggest visualizations



#### Failure of The Invariance Principle



#### Success of The Invariance Principle



#### Failure of The Unambiguity Principle



#### Success of The Unambiguity Principle





#### Failure of The Correspondence Principle



**c1** 

#### Success of The Correspondence Principle





## "colormapping, then opposing" **differs** from "negating, then colormapping"



(a) Hue+Luminance colormap





 $v \circ r$ 



(b) Diverging colormap

The algebraic process:

Pick spaces of interest
Pick transformations of interest
Study what happens on the other side

(We want a theory to **explain**, **critique** and **suggest** visualizations)

## Interlude: Cleveland and McGill

Position: Good Length: Good Angle: Not so good Saturation: Not so good

#### Case Study:

## Employment rates across countries and genders

Original visualizations by Jonathan Schwabish and NYT's Catherine Rampell



UNGFAEBGCIS F Π N Fl



- 1.  $\alpha_1$ : What if the rate was different for just one gender? Either  $x'_W = x_W + k$  and  $x'_M = x_M$ , or,  $x'_M = x_M + k$  and  $x'_W = x_W$ .
- 2.  $\alpha_2$ : What if the rates for men and women were switched?  $x'_M = x_W$  and  $x'_W = x_M$ .
- 3.  $\alpha_3$ : What if the gender gap in the rate was different?  $x'_M = x_M + k$  and  $x'_W = x_W - k$ .
- 4.  $\alpha_4$ : What if the overall rate was different (the same gender gap)?  $x'_M = x_M + k \text{ and } x'_W = x_W + k.$









01 in annia

Mamon

Man





- 1.  $\alpha_1$ : What if the rate was different Either  $x'_W = x_W + k$  and  $x'_M$
- 2.  $\alpha_2$ : What if the rates for me  $x'_M = x_W$  and  $x'_W = x_M$ .
- 3.  $\alpha_3$ : What if the gender gap  $x'_M = x_M + k$  and  $x'_W = x_W k$
- 4.  $\alpha_4$ : What if the overall rate  $x'_M = x_M + k$  and  $x'_W = x_W k$





- 1.  $\alpha_1$ : What if the rate was different Either  $x'_W = x_W + k$  and  $x'_M$
- 2.  $\alpha_2$ : What if the rates for me  $x'_M = x_W$  and  $x'_W = x_M$ .
- 3.  $\alpha_3$ : What if the gender gap  $x'_M = x_M + k$  and  $x'_W = x_W k$
- 4.  $\alpha_4$ : What if the overall rate  $x'_M = x_M + k$  and  $x'_W = x_W k$

% of women in senior mgmt. 20

15

10

5

0

5 10

15 % of men in senior mgmt.

USA

IRL

20

NZL

• EST

% of women in senior mgmt. 20



- 1.  $\alpha_1$ : What if the rate was dif Either  $x'_W = x_W + k$  and  $x'_M$
- 2.  $\alpha_2$ : What if the rates for me  $x'_M = x_W$  and  $x'_W = x_M$ .
- 3.  $\alpha_{35}$  What if the gender gap  $x'_M = x_M + k$  and  $x'_W = x_W - k$
- 4.  $\alpha_4$ : What if the overall rate  $x'_M = x_M + k$  and  $x'_W = x_W - k$

5

% of women in senior mgmt. 20



- 1.  $\alpha_1$ : What if the rate was different time is the rate was different time in the rate was different time is a second Either  $x'_W = x_W + k$  and  $x'_M$
- 2.  $\alpha_2$ : What if the rates for me  $x'_M = x_W$  and  $x'_W = x_M$ .
- 3.  $\alpha_3$ : What if the gender gap  $x'_M = x_M + k$  and  $x'_W = x_W - k$
- 4.  $\alpha_4$ : What if the overall rate  $x'_M = x_M + k$  and  $x'_W = x_W - k$

## Summary

- To evaluate a visualization:
  - take one instance of the data being visualized, and think about how the input could have been different
  - What this would do to the vis? Is this a good channel? Is it separable?
  - Conversely, think of the good channels: position, length, luminance - do changes of these attributes correspond to sensible changes in the data?









