
An Algebraic Process 
for Visualization Design

Carlos Scheidegger, Gordon Kindlmann


VIS 2014



Test Suites for Visualization

• How do we know that a visualization is doing the 
right thing?


• What is even the right thing?



EVALUATION



Evaluation through User 
Studies

• Define tasks, run user study, measure variable, do 
stats


• Very hard to do right, time-consuming, expensive


• and even harder for conclusions to generalize


• Whole courses are taught entirely about this - we’re 
not going to do that



“Evaluation through 
Imagination”

• Instead, we are going to use thought experiments:


• What if the input were different - what would 
this change cause?


• What if the picture were different - how could 
the input have been different?


• The answers tell us a lot about the visualization


• Not as good as a good user study, but practical
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Fig. 2: Our Invariance Principle illustrated with taxi pick-ups and drop-offs (a), two different samples from a population (b), volume renderings of
sampled 3D cubic polynomial (c), and vector glyphs in a 2D flow field (d). The upper pair of adjacent visualizations are of exactly the same
underlying data or object, but give different impressions due to arbitrary differences in representation, sometimes beyond the control of the
designer. The bottom row demonstrates the Invariance Principle with visualizations that do not depend on representation choice.

w is the identity, and they solve (1) in a particular way. We informally
notate this “a ⇠= w” to convey the desired congruence [52] between the
data and visualization symmetries. Applying the Correspondence Prin-
ciple proceeds by defining a particular symmetry of interest (either
on the data space or on the visual space), finding the symmetry on
the other side of the commutative diagram that solves (1), and then
assessing whether there is a reasonable correspondence between a
and w . More so than the other two, the Correspondence Principle im-
plements the task-dependence of visualization design, since designers
can choose a to model data properties of particular value for some
application. Choosing the visualization symmetry w is informed by
the current scientific understanding of the visual system and our basic
mechanisms of visual comprehension. Cleveland and McGill famously
determined, for example, that changes in positions along a common
scale are better distinguished than changes in length, which are in turn
better distinguished than changes in area or color saturation [11].

We suggest that two terms are appropriate for describing Correspon-
dence failures, according to whether one is judging the data symmetry
relative to the visual symmetry or vice versa. We acknowledge the
distinction between the two may not be clear cut, and that the math-
ematical vocabulary for their expression is currently lacking. When
we pick a meaningful data symmetry a and find the matching visual
symmetry w unsatisfactory, we say the visualization has a jumbler, or
that it jumbled a . When a clear and readily apparent w turns out to
correspond to a complicated or inconsequential a , we say the visual-
ization has a misleader, since w gave a misleading interpretation of the
data. If an obvious w maps to a visual stimulus that the visualization
v can never produce from any representation, then there is no a that
solves (1); this is an additional kind of misleader.

4 EXPLAINING PRINCIPLES AND FAILURES BY EXAMPLE

This section describes the principles and their failures by reference to
the examples in Figs. 1, 2, 3, 4, and the literature. We hope to convey
that our principles are not a new set of rules to obey, but are tools for
investigating and describing how a visualization does or does not depict
data, and for improving visualizations in an informed way.

4.1 Representation Invariance
Figures 1 and 2 show examples of hallucinators. The hallucinators
in Figs. 1(a) and 2(a) are permutations of a list representing a set.
Considered as samples from a population, sets of countries (or taxi pick-
up and drop-off locations) have no intrinsic ordering, but representing
the set as a list necessarily picks some order. Note that in Fig. 1(a),

the scatterplot does not have a hallucinator, while in Fig. 2(a), the
scatterplot does. This happens because the hallucinator in Fig. 2(a)
arises from the non-commutativity of the “over” operator when different
colors overdraw each other, even with low opacity [37].

Figure 2(b) illustrates an Invariance Principle failure that may occur
in statistical visualization. Two samples drawn from a single underlying
population are plotted with the hope of getting a sense of that population.
But the most visually prominent differences in peaks and valleys in
the top two plots are features of the sample (the representation), not
of the population (the data). In the bottom of Fig. 2(b), the same
shape of the underlying population is revealed from both samples by
the application of kernel density estimation [35] and an appropriate
bandwidth (Gaussian kernel width), producing two plots that can be
considered visually equivalent (i.e. w = 1V ).

Figures 2(c) and (d) have hallucinators associated with the different
grids that sample the same underlying continuous field. The volume
renderings in Fig. 2(c) depict the Cayley cubic polynomial f (x,y,z) =
x2 + y2 � zx2 + zy2 + z2 � 1, for which isosurface f (x,y,z) = 0 has
zero Gaussian curvature [58]. Renderings with the Catmull-Rom filter,
with insufficient continuity and accuracy (in the Taylor-series sense),
visually emphasize the sampling grid and show shapes with non-zero
Gaussian curvature. Möller et al. design filters (for field reconstruction
by convolution) of arbitrary continuity and accuracy, including those
that can exactly reconstruct cubics [32]. A better filter removes the
hallucinator because it leads to the same (correct) rendering regardless
of sampling grid orientation. The hedgehog plots in the top of Fig. 2(d)
visualize individual vector values with arrows at every regular grid point.
This may be good for data quality inspection, but the impression of the
smooth underlying flow pattern is unduly affected by the sampling grid.
The hallucinator is removed with a glyph placement strategy based
on reconstructing the underlying continuous vector field, such as the
image-guided placement of Turk and Banks [49].

4.2 Unambiguous Data Depiction

Recognizing and characterizing confusers (failures of Unambiguity)
provides an actionable path for visualization design. The ellipsoids
in the top of Fig. 1(b) visualize very different tensors, but the glyphs
appear very similar due to bas-relief ambiguity, for which the con-
fuser is scaling along the view direction [1]. Though it preceded
our current terminology and theory, the same confuser was used in
designing superquadric tensor glyphs [23]. Subsequent work general-
ized superquadric glyphs to a larger class of tensors, based on design
principles analogous to those of this paper [40]. Confusers also help
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w is the identity, and they solve (1) in a particular way. We informally
notate this “a ⇠= w” to convey the desired congruence [52] between the
data and visualization symmetries. Applying the Correspondence Prin-
ciple proceeds by defining a particular symmetry of interest (either
on the data space or on the visual space), finding the symmetry on
the other side of the commutative diagram that solves (1), and then
assessing whether there is a reasonable correspondence between a
and w . More so than the other two, the Correspondence Principle im-
plements the task-dependence of visualization design, since designers
can choose a to model data properties of particular value for some
application. Choosing the visualization symmetry w is informed by
the current scientific understanding of the visual system and our basic
mechanisms of visual comprehension. Cleveland and McGill famously
determined, for example, that changes in positions along a common
scale are better distinguished than changes in length, which are in turn
better distinguished than changes in area or color saturation [11].

We suggest that two terms are appropriate for describing Correspon-
dence failures, according to whether one is judging the data symmetry
relative to the visual symmetry or vice versa. We acknowledge the
distinction between the two may not be clear cut, and that the math-
ematical vocabulary for their expression is currently lacking. When
we pick a meaningful data symmetry a and find the matching visual
symmetry w unsatisfactory, we say the visualization has a jumbler, or
that it jumbled a . When a clear and readily apparent w turns out to
correspond to a complicated or inconsequential a , we say the visual-
ization has a misleader, since w gave a misleading interpretation of the
data. If an obvious w maps to a visual stimulus that the visualization
v can never produce from any representation, then there is no a that
solves (1); this is an additional kind of misleader.

4 EXPLAINING PRINCIPLES AND FAILURES BY EXAMPLE

This section describes the principles and their failures by reference to
the examples in Figs. 1, 2, 3, 4, and the literature. We hope to convey
that our principles are not a new set of rules to obey, but are tools for
investigating and describing how a visualization does or does not depict
data, and for improving visualizations in an informed way.

4.1 Representation Invariance
Figures 1 and 2 show examples of hallucinators. The hallucinators
in Figs. 1(a) and 2(a) are permutations of a list representing a set.
Considered as samples from a population, sets of countries (or taxi pick-
up and drop-off locations) have no intrinsic ordering, but representing
the set as a list necessarily picks some order. Note that in Fig. 1(a),

the scatterplot does not have a hallucinator, while in Fig. 2(a), the
scatterplot does. This happens because the hallucinator in Fig. 2(a)
arises from the non-commutativity of the “over” operator when different
colors overdraw each other, even with low opacity [37].

Figure 2(b) illustrates an Invariance Principle failure that may occur
in statistical visualization. Two samples drawn from a single underlying
population are plotted with the hope of getting a sense of that population.
But the most visually prominent differences in peaks and valleys in
the top two plots are features of the sample (the representation), not
of the population (the data). In the bottom of Fig. 2(b), the same
shape of the underlying population is revealed from both samples by
the application of kernel density estimation [35] and an appropriate
bandwidth (Gaussian kernel width), producing two plots that can be
considered visually equivalent (i.e. w = 1V ).

Figures 2(c) and (d) have hallucinators associated with the different
grids that sample the same underlying continuous field. The volume
renderings in Fig. 2(c) depict the Cayley cubic polynomial f (x,y,z) =
x2 + y2 � zx2 + zy2 + z2 � 1, for which isosurface f (x,y,z) = 0 has
zero Gaussian curvature [58]. Renderings with the Catmull-Rom filter,
with insufficient continuity and accuracy (in the Taylor-series sense),
visually emphasize the sampling grid and show shapes with non-zero
Gaussian curvature. Möller et al. design filters (for field reconstruction
by convolution) of arbitrary continuity and accuracy, including those
that can exactly reconstruct cubics [32]. A better filter removes the
hallucinator because it leads to the same (correct) rendering regardless
of sampling grid orientation. The hedgehog plots in the top of Fig. 2(d)
visualize individual vector values with arrows at every regular grid point.
This may be good for data quality inspection, but the impression of the
smooth underlying flow pattern is unduly affected by the sampling grid.
The hallucinator is removed with a glyph placement strategy based
on reconstructing the underlying continuous vector field, such as the
image-guided placement of Turk and Banks [49].

4.2 Unambiguous Data Depiction

Recognizing and characterizing confusers (failures of Unambiguity)
provides an actionable path for visualization design. The ellipsoids
in the top of Fig. 1(b) visualize very different tensors, but the glyphs
appear very similar due to bas-relief ambiguity, for which the con-
fuser is scaling along the view direction [1]. Though it preceded
our current terminology and theory, the same confuser was used in
designing superquadric tensor glyphs [23]. Subsequent work general-
ized superquadric glyphs to a larger class of tensors, based on design
principles analogous to those of this paper [40]. Confusers also help
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on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 3: Demonstrating the Principle of Unambiguous Data Depiction with ambiguous visualizations in the upper row, and their disambiguations
in the lower row. Standard treemaps (a) do not clearly show hierarchy; cushion treemaps do [54]. Parallel coordinate plots (b) are ambiguous
when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 3: Demonstrating the Principle of Unambiguous Data Depiction with ambiguous visualizations in the upper row, and their disambiguations
in the lower row. Standard treemaps (a) do not clearly show hierarchy; cushion treemaps do [54]. Parallel coordinate plots (b) are ambiguous
when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
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ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change w than the change w 0 induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.



Fa
ilu

re
s 

of
U

na
m

bi
gu

ou
s

Da
ta

 D
ep

ic
tio

n

U
na

m
bi

gu
ou

s
vi

su
al

iza
tio

ns

Same leaves,
different structure

Same 1D distributions, 
different dataset

(a)  (Cushion) Treemaps (b)  Parallel Coordinates (with Color)

Same streamlines,
different flow velocities

(c)  LIC (with contrast modulation)

Fig. 3: Demonstrating the Principle of Unambiguous Data Depiction with ambiguous visualizations in the upper row, and their disambiguations
in the lower row. Standard treemaps (a) do not clearly show hierarchy; cushion treemaps do [54]. Parallel coordinate plots (b) are ambiguous
when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.

(a) Hue+Luminance colormap

≠Fa
ilu

re
s 

of
Vi

su
al

-D
at

a
C

or
re

sp
on

de
nc

e

Vi
su

al
iza

tio
ns

sa
tis

fy
in

g
C

or
re

sp
on

de
nc

e

“colormapping, then opposing” differs from
“negating, then colormapping”

I

NI VH(NI)

(b) Diverging colormap

“colormapping, then opposing” is equal to
“negating, then colormapping”

VD(NI) NVD(I)

v � r
�

VH(I)

v � r NVH(I)

VD(I)I

NI

v � r
�

=v � r

Ve(T)

T

ST

(c) Superquadric Tensor Glyphs

Vq(ST) SVq(T)

“glyphing, then scaling” differs from 
“scaling, then glyphing”

(d) Ellipsoidal Tensor Glyphs

“glyphing, then scaling” is equal to
“scaling, then glyphing”

Ve(ST) SVe(T)

�
v � r

v � r ≠

=

Vq(T)

v � r
T

ST

�

v � r

��� ���

��=� ��=�

Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation a of elevation prior to colormapping induces
change w 0 in the visualization, but “negating” colors (switching with opponent hues) makes a very different change w . With a diverging colormap
(b), w 0 and w are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
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characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (|x|, |y|, |z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and �v of a single eigenvector.
But there is a confuser: all eight distinct vectors (±x,±y,±z) map to
the same color. Recognizing that identifying antipodal points v and �v

on the sphere produces the real projective plane RP

2, Demiralp et al.
propose eigenvector coloring by embedding a standard parameteriza-
tion of RP

2, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
a that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally



so
rt

e
d

 b
y 
w
om

en
%

so
rt

e
d

 b
y 
m
en
%

so
rt

e
d

 b
y 
ga
p%

In
va

ria
nc

e 
Pr

in
ci

pl
e 

fa
ilu

re
s:

Di
ffe

re
nt

 p
er

m
ut

at
io

ns
 ⇒

 D
iff

er
en

t I
m

pr
es

si
on

s

#1: Bars and dots #2: Bars #3: Dots and lines

Vi
su

al
iza

tio
ns

 re
sp

ec
tin

g 
In

va
ria

nc
e

0

5

10

15

20

US
A

NZ
L

GB
R

IR
L

AU
S

ES
T

BE
L

GR
C

CA
N

IS
L

FR
A

IT
A

NL
D

FI
N

0

5

10

15

20

GB
R

IR
L

US
A

NZ
L

ES
T

NL
D

FI
N

BE
L

AU
S

GR
C

IS
L

CA
N

FR
A

IT
A

0

5

10

15

20

FI
N

NL
D

IR
L

GB
R

ES
T

BE
L

IS
L

GR
C

CA
N

AU
S

NZ
L

FR
A

US
A

IT
A

0 10 20 0 10 20

USA
NZL
GBR
IRL
AUS
EST
BEL
GRC
CAN
ISL
FRA
ITA
NLD
FIN

Women Men

0 10 20 0 10 20

GBR
IRL
USA
NZL
EST
NLD
FIN
BEL
AUS
GRC
ISL
CAN
FRA
ITA

Women Men

0 10 20 0 10 20

FIN
NLD
IRL
GBR
EST
BEL
ISL
GRC
CAN
AUS
NZL
FRA
USA
ITA

Women Men

USA
NZL
GBR
IRL

AUS
EST

BEL
GRC

CAN
ISL
FRA
ITA
NLD

FIN

% in senior mgmt.
0 5 10 15 20

men
womenGBR

IRL
USA

NZL
EST

NLD
FIN

BEL
AUS

GRC
ISL
CAN
FRA
ITA

% in senior mgmt.
0 5 10 15 20

men
womenFIN

NLD
IRL
GBR

EST
BEL

ISL
GRC

CAN
AUS

NZL
FRA

USA
ITA

% in senior mgmt.
0 5 10 15 20

men
women

USA

NZL GBR
IRL

AUS EST
BEL

GRCCAN
ISLFRA

ITA
NLD

FIN

% of men in senior mgmt.

% of women in senior mgmt.

0 5 10 15 20
0

5

10

15

20

USA

NZL GBR
IRL

AUS EST
BEL

GRCCAN
ISLFRA

ITA
NLD

FIN

% of men in senior mgmt.

% of women in senior mgmt.

0 5 10 15 20
0

5

10

15

20

#4: Plain Scatterplot #5: Decorated Scatterplot
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally
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Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks
We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations a of data space. The a model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry a first with words and then with equations, in which
xM and xW denote the rates for men and women, respectively.
1. a1: What if the rate was different for just one gender?

Either x0
W = xW + k and x0

M = xM , or, x0
M = xM + k and x0

W = xW .

2. a2: What if the rates for men and women were switched?
x0

M = xW and x0
W = xM .

3. a3: What if the gender gap in the rate was different?
x0

M = xM + k and x0
W = xW � k.

4. a4: What if the overall rate was different (the same gender gap)?
x0

M = xM + k and x0
W = xW + k.

An important step of our process is figuring out how to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.
We incrementally grow the set of data symmetries until we are satisfied.
Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries a to
visual symmetries w to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries w correspond to the most important data symmetries a .

5.2 Design iterations
5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing xM) or
changes of length of the bar (for changing in xW ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping xM and xW ) a straightforward
w: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xM or xW moves a dot horizontally



Summary
• To evaluate a visualization: 

• take one instance of the data being visualized, and 
think about how the input could have been 
different 

• What this would do to the vis? Is this a good 
channel? Is it separable? 

• Conversely, think of the good channels: position, 
length, luminance - do changes of these attributes 
correspond to sensible changes in the data?


