Announcements...

- TCE website still open - please fill it out!



So You Have Too Much
Data. What Now?

C3S444



Previously...

- “Overview, zoom-and-filter, details-on-demand”

-+ These are requirements for the experience of an
interactive visualization

- But how do we implement them?

- Today’s lecture is a sampling of ongoing research
work in the area



Do we care about this?

- A half-second latency
between query and response
changes user strategies in
interactive data analysis

- Order effect: if first interaction
IS high-latency, user
performance is degraded
throughout entire session

The Effects of Interactive Latency on Exploratory Visual Analysis

Zhicheng Liu and Jeffrey Heer

Abstract—To suppor! ellactive expioration, # s oben staled that inenactive visualirations shoud provide ragid response Smes.
However, the o%ects of interactive latency on the process and outcomes of mploratory visual analysis have not boon systematcally
studied. We present an experiment measuring user bahavior and knowledge dscovery with interacive visualizations under varying
latency condsons. We ocbserve that an acanonal delay of 500ms Incurs signficant Costs, deCrRasing user activiy and data set
coverage. Aralyzing verbal data from think-sioud prolocols, we nd that increased Istency roduces the e al which users make
ODSHIVANONS, AW OINSMAIZALONS ANT QENMAI0 NyPONasaes. MOreover, W NOMe INNFACION @Nects I which Nl axposure 1
higher latencies leads 10 subsaguantly reduced performance in & low-ialency setiing. Overall, IncCraased BMrcy causes users 1o shilt
axpiontion stategy, in tuen aflecting porformance. We decuts Pow !eso rosulls can inferm the design of inleractive analysis 1ools

Index Terme—imoraction, latercy. axploratory analyss, intoractve visualzation, scalabiity, user porformance, vorbal analyss

1 INTRODUCTION

One stased goal of imeractive visualization is %o coable data analysis
Al “pases resonant with the pace of human thought™ (19, 20], This goal
entails two rescarch directions: understanding the rate of cogmitive
activities in the context of visualization, and supporting these cogmitive
processes through appropriately designed and performant systems.

Latency is & central issue undeslying these research peoblesss. Due
%0 the time requinred for query processing, data tramsfer, and rendering,
data-intensive visualizanon systems incur delay. It is generally held
that low latcacy leads 10 improvead usability and better user expericnce
Unsurprisingly, multiple research efforts focus on reducing query and
readering latency for large datasets, which may include billiees or
more daca poimts. Latencies in ste-of-the-an sysiems can range from
20 milliseconds up %o malkiple seconds for a unit task (2, 28, 29].

Despite the shared goal of misisvizing latency, the effects of interac-
ton delays on user behavior and knowledge Escovery with viswaliza-
tons remais largely unevalusted. While previous research ca the of
fects of inveractive lnency ia puzzie solving [4, 17, 38, 36] and scarch
(8] has shown that user behavior changes in resposse 10 millisecond-
walk differences ia laicacy, stedics in other dommaing sach as compuner
games report ao significant effects (23, 39).

It is enclear 1o what degree these lindiags apply 10 expleratory vi
sual amalysis. Unlike problem-solviag Lasks or most compuler games,
explorstory vissal analysis i openended and does not have a clear
goal state. User intesaction may be triggered by sakent vissal cues
i the display, driven by a priori hypotheses, or camed out through
exploraory browsing. The process is more spontanccus and is uncon
strained by factors such as game rules.

How does latency affect wner bebuvior and knowledpe discovery
o exploratory visual asalysis? To asswer thes question, we coaduct
controlled experiments comparing two latency conditions, &ffening by
S00ms per operaticn. We analyre dats collected from both system
logs and think-aloud protecols o test if (2) delay impacts inleraction
wradegios and (b) lower latency Jeads to betler smadyvis perforsance

O work makes the following contributions. First, we present the
design and the results of a controlled study coalirming that a S00ms
dilference cas have ugadficast immpacts on visusl analysis.  Specili
cally, we liad that (1) the addusonal delay results in reduced inter-
action and reduced dataset coverage dunng amlysis; (2) the rale 3
which users make observations, deaw gemeralizations and generate by~
potheses (a8 determined ssing a thnk-aloud protocol) dlso declines

due to the delay; and (3) inisial exposure o delays can negatively im-
pact overall performance even when the delay is removed in a later
session. Second, we extend the insight-based evaluation methodology
[37, 38] for companative analysis of quaitative data regandisg visa:
alization use. We istroduce a procedare for segmenting. coding aad
smalysisg sk -aloud peotocols for vissalization rescasch. Our smal
ysis contribates coding categories that are potentially applicable for
future protocol smalysis. Fisally, our sesslts show that the same delay
has varying influeaces oo different imesactive operations. We discuss
some Emplications of these findings for system design.

2 Retwareo Wonk

Osr rescarch draws on related work in swalsble visalization systerss,
cogaitive sclence and domain-specific favestigations on the effects of
interactive kaleocy. We review relevant Blerature below,

2.1 Scalable Data Analysis Systoms
Buildiag low lalency analysis systems bas boen a focus for ssany re-
search projects and comumercial systems, spanning both back-ead aad
front-end engineceriag efforts. Spark (44, 45) supposts fast in-memory
clesier computing through read-oaly distributed datasets foe machine
learning tasks and mderactive ad-hoc Quenies. Nanocubes (28] con-
tribete & method 10 sore and query mulli-dEmensional aggregatod s
at multiple Jevels of resodation in memory for visualization Profiler
[26) builds in-memory data cubes for query processing. Tableau's dsta
cogine [1) optimires both s messory stores 2ad live coanections o
databases on disk. imMens [29] decomposes multi-Amensional dsta
cubes into binned data tiles of reduced dimensionality and performs
accelormed guery processing and rendering on the GPU

In cases where long-ruaning quenes are unavosdable, sampiing and
online aggregation [22] are ofien used %0 improve user experience
BEnKDB (2] dbuilds multi-dimensional, muki-resolution sampies and
dynamically estimases a query’s response time and error. With online
aggregation [22), visualizations of cstimated resuls are inceementally
updated as a query progresses. Stodies suggest that data analysts can
interpoet approximate results visualized as bar charts with ermor bars to
make confidest decisions [16]

22 Time Scales of Human Cognition
Decades of psychology research have produced evidence that differ-
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{in{ get RandomNumber-()
return 4. // chosen by fair dice roll.
// quaranteed to be random.
}

https://xkcd.com/221/

Sampling

If it’s good enough for stats, it should be good enough
for vis (right?)



Why sampling?

- |n statistics, we do it for two reasons:

- For many questions, we don’t need the entire
population to get good answers

- And it’s too costly anyway

- |In vis, we want to reduce running time, latency, or
time to next question



Incremental Analytics

Session: Visualization + Visual Analysis

CHI 2012, May 5-10, 2012, Austin, Texas, USA

Trust Me, I’'m Partially Right: Incremental Visualization
Lets Analysts Explore Large Datasets Faster

Danyel Fisher , Igor Popov*, Steven M. Drucker , mc schraefel’

"Microsoft Research
1 Microsoft Way,
Redmond, WA USA
{danyelf, sdrucker}@microsoft.com

ABSTRACT

Queries over large scale (petabyte) data bases often mean
waiting overnight for a result to come back. Scale costs
time. Such time also means that potential avenues of
exploration are ignored because the costs are perceived to
be too high to run or even propose them. With
sampleAction we have explored whether interaction
techniques to present query results running over only
incremental samples can be presented as sufficiently
trustworthy for analysts both to make closer to real time
decisions about their queries and to be more exploratory in
their questions of the data. Our work with three teams of
analysts suggests that we can indeed accelerate and open up
the query process with such incremental visualizations.

"Electronics and Computer Science

University of Southampton
Southampton, Hampshire, UK SO17 1BJ
{mc+w, ip2g09} @ecs.soton.ac.uk

query costs in a variety of ways. Strategies to accelerate
large scale data processing are represented in systems like
Dremel [9] and C-Store [18] that churn through large
collections of data by pre-structuring the data and moving
the computation closer to the data.

So while computational and storage approaches make large
scale queries possible, they still often restrict either the
number and types of queries that might be run, or avenues
that might be explored because the queries must be
designed with such care to be worth the wait and the cost of
queuing for the resource.

One possible technique, proposed by Hellerstein and others
[4], 1s to query databases incrementally, looking at ever-



Incremental Analytics

sampleAction

Owmenssons Fiters Y .
Resume Remove Son Add o daahboard Cumrert sampie se 20000 Compisted 0 22%
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Figure 1. The Analytics panel in sampleAction showing an incremental visualization in progress. The analyst is looking at flight delays
by day of week. (1) Selecting columns to be shown in (2) the visualization. Dark blue bars show current estimates; pale blue dots show
the expected range of values. This prototype interface includes multiple selectable bounding algorithms. (3) A progress indicator
showing that 0.32% of the database has been seen so far.



Incremental Analytics

- Show uncertainty range

- These come from

“concentration bounds”

- As you get more data,
uncertainty drops.

| I I
MayOT'w
’ ! ! i ) )



How do we build this?

- Instead of asking server for entire dataset, ask for
*1000 values at random”

- or “next 1000 values”

- Compute based only on those values



Sampling demo

> ggplot(filter(diamonds, carat < 3), aes(x=carat, y=price)) + geom_point()

aoud

carat



Sampling demo

> ggplot(filter(sample_n(diamonds, 1000), carat < 3), aes(x=carat, y=price)) + geom_point()
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Sampling demo

> ggplot(filter(sample_n(diamonds, 1000), carat < 3), aes(x=carat, y=price)) + geom_point()

price
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Sampling demo

> ggplot(filter(diamonds, carat < 3), aes(x=carat, y=price)) + geom_point()

aoud

carat



Sampling demo

> ggplot(filter(sample_n(diamonds, 1000), carat < 3), aes(x=carat, y=price)) +

geom_point(size=2*sqrt(58700 / 1000))

[

price

carat



But what about
outliers?



(After about 20 tries...)

> ggplot(sample_n(diamonds, 1000), aes(x=carat, y=price)) + geom_point(size=2*sqrt(58700/1000))

carat



tlhers..

Without filtering ou

price)) + geom_point()

> ggplot(diamonds, aes(x=carat, y

aond

carat



Outliers are not the only
problem

- Simple random sampling only works when

subpopulation is “easy to access”

- This is not only about vis! (political polls...)



Outliers are not the only
problem

- So... why does it work for sampleAction?



Outliers are not the only
problem

Difficulties with Error Bar Convergence

We did not anticipate the tremendous variance in
confidence interval sizes. While Bob never saw a
confidence interval much larger than his largest data point,
Allan often could not see his data without hiding the
confidence intervals. Past literature on visualizing
uncertainty [11] has emphasized visualizations that fit the
entire uncertainty range on screen; these were not sufficient
for some of these preliminary bounds. It would be
worthwhile investigating visualizations that can show the
size of the interval even past screen borders.

+ S0... why does it work for sampleAction?

- ... It kind of doesn’t



Outliers are not the only
problem

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

Quetee

AN w2 Cuba

(a) (b)

Figure 1: A symbol map (a) and heatmap (b) visualizing a dataset of Brightkite user checkins. The symbol map visualizes a
sample of the data, and the heatmap shows the density of checkins by aggregation. Compared to the heatmap, sampling misses
important structures such as inter-state highway travel and Hurricane Ike, while dense regions still suffer from over-plotting.




What’s going on here”

- Simple random sampling only works when
subpopulation is “easy to access”

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data




How do we solve |t?

- Very much an active research problem



lab

UC Berkeley

. Al
inkDB . :i.

Queries with Bounded Errors and Bounded Response Times on Very Large Data

BlinkDB Developer Alpha 0.2.0 Released!

BlinkDB is a massively parallel, approximate query engine for running interactive SQL queries on large volumes of data. It allows users
to trade-off query accuracy for response time, enabling interactive queries over massive data by running queries on data samples and
presenting results annotated with meaningful error bars. To achieve this, BlinkDB uses two key ideas: (1) An adaptive optimization
framework that builds and maintains a set of multi-dimensional samples from original data over time, and (2) A dynamic sample
selection strategy that selects an appropriately sized sample based on a query’s accuracy and/or response time requirements. We have
evaluated BIlinkDB on the well-known TPC-H benchmarks, a real-world analytic workload derived from Conviva Inc. and are in the
process of deploying it at Facebook Inc.

BlinkDB has been demonstrated live at VLDB 2012 on a 100 node Amazon EC2 cluster answering a range of queries on 17 TBs of data
in less than 2 seconds (over 200x faster than Hive), within an error of 2-10%.



How do we solve |t?

BlinkDB features an Offline
Sampling Module that creates
Uniform and Stratified samples from
underlying data within a given
storage budget. The sets of
column(s) to stratify on are decided
by solving a MILP optimization
problem that takes into account the
frequently occurring column(s) in
the GROUP BY and WHERE clauses
of the queries. This module is also
responsible for periodically
updating, deleting and refreshing
the samples to minimize the
statistical bias.
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How do we solve |t?

- Big idea: stratified samples

BlinkDB features an Offline Uniform Samples
Sampling Module that creates » Stratified Samples
Uniform and Stratified samples from

underlying data within a given
storage budget. The sets of
| column(s) to stratify on are decided

by solving a MILP optimization || TABLE

problem that takes into account the

frequently occurring column(s) in | ©Original

both on disk and in-memory
(i.e., RDDs

the GROUP BY and WHERE clauses | Da3t2 |]: )

of the queries. This module is also

responsible for periodically {’ On-Disk In-Memory
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the samples to minimize the
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How do we solve |t?

- Big idea: only preserve visually important properties

- http://arxiv.org/pdf/1412.3040.

pdf

Rapid Sampling for Visualizations
with Ordering Guarantees

Albert Kim Eric Blais Aditya Parameswaran
MIT MIT and University of Waterloo MIT and lllinois (UIUC)
alkim@csail.mit.edu eblais@uwaterloo.ca adityagp@illinois.edu
Piotr Indyk Sam Madden Ronitt Rubinfeld
MIT MIT MIT and Tel Aviv University
indyk@mit.edu madden@csail.mit.edu ronitt@csail.mit.edu
85m

ABSTRACT

Visualizations are frequently used as a means to understand trends
and gather insights from datasets, but often take a long time to gen-
erate. In this paper, we focus on the problem of rapidly generating
approximate visualizations while preserving crucial visual proper-
ties of interest to analysts. Our primary focus will be on sampling
algorithms that preserve the visual property of ordering; our tech-
niques will also apply to some other visual properties. For instance,
our algorithms can be used to generate an approximate visualiza-
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http://arxiv.org/pdf/1412.3040.pdf

How do we solve |t?

- Big idea: only preserve visually important properties

- Sample the subset that is most likely to change the

output where it matters

Rapid Sampling for Visualizations
with Ordering Guarantees

Albert Kim Eric Blais
MIT MIT and University of Waterloo
alkim@Qcsail.mit.edu eblais@uwaterloo.ca
Piotr Indyk Sam Madden
MIT MIT
indyk@mit.edu madden@csail.mit.edu

ABSTRACT

Visualizations are frequently used as a means to understand trends
and gather insights from datasets, but often take a long time to gen-
erate. In this paper, we focus on the problem of rapidly generating
approximate visualizations while preservine crucial visual proper-
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Aditya Parameswaran
MIT and lllinois (UIUC)
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Ronitt Rubinfeld
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LEMMA 2 (HOEFFDING-SERFLING INEQUALITY [46]). Let
Y= Yoo YN be a set of N values in [0, 1] with average value
Ji, Zz 1 Yi = p. Let Y1, ..., YN be a sequence of random variables
drawn from ) without replacement. For every 1 < k < N and

e >0,
2ke”
1-kL )

N

Xic1Ye

m

Pr| max
k<m<N-1

We use the above inequality to get tight bounds for the value of
. Y:/mforall 1 <m < N, with probability §. We discuss next
how to apply the theorem to complete Step 2 of our proof.

- ZE]SZexp(—

THEOREM 3.2. Let Y = y1, ..., yn be a set of N values in
[0,1] with average value + Y1 ,yi; = p. Let Y1,...,Yn be a
sequence of random variables drawn from Y without replacement.
Fixany§>0and k> 1. For1 <m < N -1, define

_ J (1- ﬂL"_)(zloglogn(m) 4 log('n'2/36))

2m/k
my.
Then: Pr [Hm, l<m< N:|==1—=_ pl > em] <9.
m
PROOF. We have:
mY;
Pr|3m,1<m<N:|==—=—-pu|>enm
T
[ 1 ic1 Yi
<ZPr 3m,k"  <m<k: ";n — K| > Em
r=1 5
<Y Pr|3m,s" <m<k — | > Exr
r=l L m
i T Y:
<) Pr max =1 "% _ oyl >e.r].
r>1 | kT™-1<meN-1 ™m

LEMMA 3. Fixi € 1...k. Define m} to be the minimal value
of m > 1 for which €,, < 7;[4. In the running of the algorithm, if
for every j € A, «, we have lv;, m? - il € Em?» then m; < m;.

Intuitively, the lemma allows us to establish that m; < m;, the
latter of which (as we show subsequently) is dependent on 7);.

PROOF. If i ¢ A, +, then the conclusion of the lemma trivially
holds, because m; < m;. Consider now the case where i € A +.
We now prove that m; = m. Note that m; = m if and only if the
interval [v; m? = Em?* s Vim?* + sm*] is disjoint from the union of
intervals U]eAm,_. i} [V],mi 8m’i‘ 3 Vj,m; + Em; ]

We focus first on all j where p; < pi. By the definition of
7i, EVery j € Am* for which p; < p; satisfies the stronger in-

equality pz; < p; — 7:. By the conditions of the lemma (i.e., that
confidence intervals always contain the true average), we have that

K 2 Vjm* = Ems and that p; <v; ,,» +Em3. So we have:
2 L
< 2 L < g A 2 <
an:+6m;."“#'j+ ern;<#3+;"‘u“_?<“"_ En ’: Vtm _ern:

« The first and last inequalities follow the fact that the confidence

interval for v; always contains p;, i.e., p; 2 v; m? ~Em?3
« the second and fourth follow from the fact that s,m < n;if4;
« and the third follows from the fact that p; < p; - 7;i.
Thus, the intervals [V; ;ns —€m» , Vi mr +Emz2 | a0d [V s =€, Vj
sm;] are disjoint. Similarly, for all j € Am; that satisfies p; > p,
we observe that the interval [u,;,m; Em? s Vi,m? + sm:] is also dis-

JOInt from [ Vi, m? smg ) Vj,m’l.‘ + em’.‘]- U

1

We are now ready to complete the analysis of the algorithm.
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Do you know the one about the physics
student who asked his professor how much gast=
math he needed to know?

Then.
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How do we solve |t?

- Big idea: stratified samples

- Big idea: only preserve visually important

properties

- Sample the subset that is most likely to
change the output where it matters
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Data Cubes

Let’s talk aggregation



Relation A Cube on Device, Language

Country Device Language .
Us Android en Country  Device  Language  Count
US iPhone ru All All . All 5
South Africa  iPhone en All Andrond All 2
India Android en All iPhone All 3
Australia iPhone en All All en 4
All All ru 1
' All iPhone ru 1
Aggregation g All Android en 2
Country  Device  Language  Count All iPhone en 2
All All All 5

Group By on Device, Language C

t D » ’ .
Country evice  Language  Coun Equivalent to Group By on

All Android en 2 )
All iPhone - ) all possible subsets of
All iPhone ru 1 {Device, Language}

Data Cubes

Let’s talk aggregation



Data Cubes: aggregate by
collapsing attributes

(a) The lattice of data cubes

quarter
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month qQuarter quarter
market state market
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..........................
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(b) Projecting a three dimensional data cube

al locations

~% | Atwo
: 1 dimensional
< | projection.

Multiscale Visualization using Data Cubes,
Stolte et al., Infovis 2002



Data Cubes

-+ There are other axes of aggregation besides
columns that we also care about in visualization

- For example, ranges



Data Cubes

- There are other axes of aggregation besides
columns that we also care about in visualization

- For example, ranges:

- How many cars sold between 1995 and 19997
- 1997 and 20017 2001 and 20027

- How do we make it go fast?



Immens: Liu, Jiang, Heer,
Eurovis 2013

- Preaggregate some dimensions into “data tiles”

- Compute final aggregations on GPUs

- Incredibly fast and simple

- Decide on spatial resolution ahead of time

- Somewhat limited querying power



Demo time

- http://vis.stanford.edu/projects/immens/demo/

brightkite/



http://vis.stanford.edu/projects/immens/demo/brightkite/

nanocubes: Lins, KlosowskKi,
Scheidegger 2013

- Many aggregations overlap

- Build data structure where aggregations over multiple
scales are compactly stored and easily combined

- Sufficiently fast (network latency dominates)

- Implementation is more involved, memory usage not
ideal



Query: produce a count heatmap of
the world for all points in my
database




Query: produce a count heatmap of
the world for all points in my
database

latitude | longitude device time

] ]
me | er | mee | e if no aggregation was pre-
3.2 -#1.3 An Auq 3, 2011 1008
¥ Auq 3, 2011 10:07

-39.3 iPhone

n computed then this query is
T | e proportional to “n’




Query: produce a count heatmap of
the world for all points in my
database
N

GO0

If we pre-aggregate counts

e e | e | 7 (e.g. quadtree) the query time
| o | e | e | s s e . becomes proportional to the
[ Y e — number of reported pixels




Query: produce a count heatmap of
the world for all points in my
database

What about brushing?

Ve pre—adauurclualc JU

“welemtlee .| (e quadtree) the query time

[P vl Reeionl s . becomes proportional to the
number of reported pixels

1




nanocubes: Lins, KlosowskKi,
Scheidegger 2013

- Simple 1D example



nanocubes: Lins, KlosowskKi,
Scheidegger 2013

- Simple 2D example



Demo time

- http://nanocubes.net

- http://hdc.cs.arizona.edu/mamba home/~cscheid/
flights test/



http://nanocubes.net
http://hdc.cs.arizona.edu/mamba_home/~cscheid/flights_test/

