Spatial Data: 3D Scalar Fields

CS444

Recap: 2D contouring

https://www.e-education.psu.edu/geog486/node/1873

Recap: 2D contouring

Case	Polarity	Rotation	Total	
No Crossings	x2		2	
Singlet	x2	x4	8	(x2 for polarity)
Double adjacent	x2	x2 (4)	4	
Double Opposite	x2	x1 (2)	2	
			16 = 24	

Splitting 3D space into simple shapes

cube splits into
6 tetrahedra

1 cube splits into 6 tetrahedra...

but also into 5 tetrahedra!

Marching Tetrahedra

Computer Graphics, Volume 21, Number 4, July 1987

MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE CONSTRUCTION ALGORITHM

William E. Lorensen Harvey E. Cline

General Electric Company Corporate Research and Development Schenectady, New York 12301

Abstract

We present a new algorithm, called *marching cubes*, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the origiacetabular fractures [6], craniofacial abnormalities [17,18], and intracranial structure [13] illustrate 3D's potential for the study of complex bone structures. Applications in radiation therapy [27,11] and surgical planning [4,5,31] show interactive 3D techniques combined with 3D surface images. Cardiac applications include artery visualization [2,16] and nongraphic modeling applications to calculate surface area and volume [21].

Spatial Data: Vector Fields

https://www.youtube.com/watch?v=nuQyKGuXJOs

Spatial Data: Vector Fields

Experimental Flow Vis

R = 32

R = 73

R = 102

R = 161

von Kármán vortex street, depending on Reynolds number

http://envsci.rutgers.edu/~lintner/teaching.html

(B.

Guadalupe Island

Mathematics of Vector Fields

$v: R^n \to R^n$

Function from vectors to vectors

A simple vector field: the gradient

https://www.youtube.com/watch?v=v0_LlyVquF8

Vector fields can be more complicated 1.5 0.5 0 -0.5 -1.5 -1.5 -0.5 1.5 2 0 0.5 -2 $v(x,y) = (\cos(x+2y), \sin(x-2y))$

http://www.math.umd.edu/~petersd/241/html/ex27b.html

Glyph Based Techniques

Hedgehog Plot: Not Very Good

Hedgehog Plot: Not Very Good

From Laidlaw et al.'s "Comparing 2D Vector Field Visualization Methods: A User Study", TVCG 2005

Uniformly-placed arrows: Not Very Good Either

Jittered Hedgehog Plot: Better

Space-filling scaled glyphs

Streamline-Guided Placement

Streamline-Guided Placement

Streamlines

Streamlines

Streamlines

Curves everywhere tangent to the vector field

Curves everywhere tangent to the vector field

Visualization via streamlines

- Pick a set of seed points
- Integrate streamlines from those points

• Which seed points?

Uniform placement

Turk and Banks, Image-Guided Streamline Placement SIGGRAPH 1996

Density-optimized placement

Turk and Banks, Image-Guided Streamline Placement SIGGRAPH 1996

Density-optimized placement

Figure 2: (a) Short streamlines with centers placed on a regular grid (top); (b) filtered version of same (bottom).

Figure 3: (a) Short streamlines with centers placed on a jittered grid (top); (b) filtered version showing bright and dark regions (bottom).

Figure 4: (a) Short streamlines placed by optimization (top); (b) filtered version showing fairly even gray value (bottom).

Turk and Banks, Image-Guided Streamline Placement SIGGRAPH 1996

Image-Based Vector Field Visualization

Line Integral Convolution

http://www3.nd.edu/~cwang11/2dflowvis.html

Cabral and Leedom, Imaging Vector Fields using Line Integral Convolution. SIGGRAPH 1993

Line Integral Convolution

Given a vector field

compute streamlines

convolve source of noise along streamlines

Result

Line Integral Convolution

Advantages

- "Perfect" space usage
- Flow features are very apparent

Downsides

- No perception of velocity!
- No perception of direction!

Image-Based Flow Visualization

- Adaptation of LIC for graphics cards
 - Extremely fast and simple to implement
 - Animation gives perception of velocity
 - (But requires knowledge of computer graphics, which we're not assuming in this course)

Image-Based Flow Visualization

http://www.win.tue.nl/~vanwijk/ibfv/