A ssignment	5	posted
		•

Quiz:

1) Why is it harder to adept the percention algorithm to handle the weighted classification case?

2) The bound for AVA is 2(Y-1)E; the bound for OVA is (Y-1)E is OVA always better? Why, or why not?

Reductions
Don't solve complicated problems from zero; find a way to drange a had problem with an easy problem and then analyze the damage"
find a way to draway a had problem
into an easy problem and them analyze
the domage"
What are the Nava problems?
- Different errors for different outcomes
- Multiple classes
(What are the error rates you are getting for perception on primary tumor?)
for perception on primary tumor!)

OVA: One versus All	
Algorithm 15 ONEVERSUSALLTRA i: for $i = 1$ to K do i: $\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class}$ i: $f_i \leftarrow \mathbf{BinaryTrain}(\mathbf{D}^{bin})$ i: end for i: return f_1, \dots, f_K	AIN($D^{multiclass}$, BINARYTRAIN) ss i is positive and $\neg i$ is negative
Algorithm 16 ONEVERSUSALLTES 1: $score \leftarrow \langle o, o, \dots, o \rangle$ 2: for $i = 1$ to K do 3: $y \leftarrow f_i(\hat{x})$ 4: $score_i \leftarrow score_i + y$ 5: end for 6: return $argmax_k score_k$	$\operatorname{T}(f_1,\ldots,f_K,\hat{x})$ // initialize K -many scores to zero
Thm: If average binar OUA has ever	yellor is E, then yell at most (N-1)E.
$f_{0}(x)$, [+1] or [-1] $f_{1}(x)$, +1 or [-1] $f_{2}(x)$, +1 or [-1]	Assume y=0
False negative:	False positive: (mof them
$f_{0}(x)$ +1 or $f_{1}(x)$ +1 or $f_{3}(x)$ +1 or $f_{3}(x)$ +1 or $f_{3}(x)$	$f_{0}(x)$ $f_{1}(x)$ $f_{1}(x)$ $f_{2}(x)$ $f_{3}(x)$ $f_{3}(x)$ $f_{3}(x)$ $f_{4}(x)$ $f_{4}(x)$
(K-1)/K chance of mistake	my chance of mistake but

requires in errors! Algorithm 17 ALL VERSUS ALL TRAIN (D^{multiclass}, BINARY TRAIN) $f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K$ $_{2:}$ for i = 1 to K-1 do $\mathbf{D}^{pos} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } i$ for j = i+1 to K do $\mathbf{D}^{neg} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } j$ $\mathbf{D}^{bin} \leftarrow \{(x,+1) : x \in \mathbf{D}^{pos}\} \cup \{(x,-1) : x \in \mathbf{D}^{neg}\}$ $f_{ij} \leftarrow \text{BinaryTrain}(\mathbf{D}^{bin})$ end for 9: end for 10: **return** all f_{ii} s Algorithm 18 AllVersusAllTest(all f_{ij} , \hat{x}) 1: $score \leftarrow \langle o, o, \ldots, o \rangle$ // initialize K-many scores to zero $_{2:}$ for i = 1 to K-1 do for j = i+1 to K do $y \leftarrow f_{ij}(\hat{x})$ $score_i \leftarrow score_i + y$ $score_i \leftarrow score_i - y$ end for $\mathbf{8:}\ \ \textbf{end}\ \ \textbf{for}$ 9: **return** argmax_k score_k Thm: A has ever role at most 2 (N-1) E.

	1234 vs	5678	
12 V	s 34	56	78
1 15 2	3 vs 4	5 vs 6	766
Each Olrevia	less prec	dicts binary	

Error-correcting output codes
Hamming 7-4 code:
A= d, A d2 A d4
B= d, 1 d3 1 d4
C= d2 1 d3 1 d4
D=d,
$E = d_2$
F= d3
G= dy
Can detect are fix any 1-bit
error on 7-bit word (!!!)

Weighted classification According = $Z[f(x) \neq y] = Z[f(x) = 0 \land y = 1]$ + $[f(x) = 1 \land y = 0]$ a>1 (weight) Weightal Accuracy = Z & [y=1 1 fcx) =0] + [fa)=11/y=0]