

Idea: explicitly search for large-margin class; hers.

EASY CASE: DATA IS SEPARABLE

min $\frac{1}{x,b}$ $\frac{1}{x,b}$ s.t. $y_i(\langle x_i, \overline{x} \rangle + b) \geq 1$ (Mas do us optimize this?) What if there's noise? Give each point some slack, try to optimize combination of slock and margins subject to $y; (\langle x;, \bar{x} \rangle tb) \geq 1 - \varepsilon;$

5;70

(Haw do you compile margin there ?) FROM LARGE MARGIN TO SMALL WEIGHTS $d^+ = \frac{1}{||w||} w \cdot x^+ + b - 1$ $d^- = -\frac{1}{||w||} \boldsymbol{w} \cdot \boldsymbol{x}^- - b + 1$ We can then compute the margin by algebra: $\gamma = rac{1}{2} \left[d^+ - d^-
ight]$ $= \frac{1}{2} \left| \frac{1}{||w||} w \cdot x^{+} + b - 1 - \frac{1}{||w||} w \cdot x^{-} - b + 1 \right|$ $=rac{1}{2}\left[rac{1}{||w||}w\cdot x^+ - rac{1}{||w||}w\cdot x^ight]$ $= \frac{1}{2} \left| \frac{1}{||w||} (+1) - \frac{1}{||w||} (-1) \right|$ $=\frac{1}{||w||}$ $+ C \sum E_i$ subject to $y_i(x_i, x_i) \neq b) > 1 - \varepsilon_i$ 8:20

WHAT ABE THE VALUES OF THE OPTIMAL S;?

$$\xi_n = \begin{cases} 0 & \text{if } y_n(\boldsymbol{w} \cdot \boldsymbol{x}_n + b) \ge 1\\ 1 - y_n(\boldsymbol{w} \cdot \boldsymbol{x}_n + b) & \text{otherwise} \end{cases}$$

In other words, the optimal value for a slack variable is *exa* hinge loss on the corresponding example! Thus, we can wr SVM objective as an *unconstrained* optimization problem:

$$\min_{w,b} \quad \underbrace{\frac{1}{2} ||w||^2}_{\text{large margin}} + \underbrace{C \sum_n \ell^{(\text{hin})}(y_n, w \cdot x_n + b)}_{\text{small slack}}$$

Algorithm 24 HINGEREGULARIZEDGD(D, λ , MaxIter) $\overline{\mathbf{w}} \leftarrow \langle o, o, \dots o \rangle \quad , \quad b \leftarrow o$ // initialize weights and bias 2: for $iter = 1 \dots MaxIter$ do $g \leftarrow \langle o, o, \dots o \rangle$, $g \leftarrow o$ // initialize gradient of weights and bias 3: for all $(x,y) \in \mathbf{D}$ do 4: if $y(w \cdot x + b) \leq 1$ then 5: // update weight gradient $g \leftarrow g + y x$ 6: // update bias derivative $g \leftarrow g + y$ 7: end if 8: end for 9: $g \leftarrow g - \lambda w$ // add in regularization term 10: $w \leftarrow w + \eta g$ // update weights 11: $b \leftarrow b + \eta g$ // update bias 12: 13: end for 14: return w, b

\sim
$<$ \times $//$ \circ \setminus
X Jake J