KERVELS

Viernels bridge the world of linear and von-linear Optimization.

INTRO: FEATURE MAPPING

How did you solve your perceptron the mystery dataset? problem on (Ux2+y2+22) ~ (x2+y2+22) (x, y, z) M $(x, y, z, x^{2}, y^{2}, z^{2})$. . . **Algorithm 5 PERCEPTRONTRAIN**(**D**, *MaxIter*) $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $a: b \leftarrow o$ // initialize bias $_{3:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example if $ya \leq o$ then $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights $b \leftarrow b + y$ // update bias end if end for

^{10.} end for ^{12.} return $w_0, w_1, ..., w_D, b$

Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \dots, w_D, b, \hat{x})$

1: $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ 2: return SIGN(a)

// compute activation for the test example

We can elways write w as linear combination of inats (BEPHESEMTER THEODEM)

for <i>iter</i> = 1 <i>MaxIter</i> do for all $(x_n, y_n) \in \mathbf{D}$ do $a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b$ // compute activation for this example.	nlo
for all $(x_n, y_n) \in \mathbf{D}$ do $a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b$ // compute activation for this example.	nlo
$a \leftarrow \sum_m \alpha_m \phi(\mathbf{x}_m) \cdot \phi(\mathbf{x}_n) + b$ // compute activation for this example.	nla
	pie
if $y_n a \leq o$ then	
$\alpha_n \leftarrow \alpha_n + y_n$ // update coefficie	nts
$b \leftarrow b + y$ // update	oias
end if	
end for	
end for	
return α, b	

Now we can replace $\langle \Phi(x_m), \Phi(x_n) \rangle$ with $K(x_m, x_n)!$

The same idea works for many other methods.

WHAT MAKES A KEHNEL?

K-means: i) Stat with a guess for K centers 2) Loop while not converged: - assign points to centers - recompte centers

Linear regression $f_{\omega}(\hat{\mathbf{x}}) = \langle \omega, \varphi(\hat{\mathbf{x}}) \rangle$ $L(w) = \sum (f_{ij}(x_i) - y_j)^{\prime}$ $= \sum \left(\left\langle \omega, \Phi(x_i) \right\rangle - y_i \right)^L$ hepresenter thm: $f(\hat{x}) = \sum_{i} c_{i} K(x_{i}, \hat{x}) = \sum_{i} c_{i} \langle \varphi(x_{i}), \varphi(x_{i}) \rangle$ Then loss function will be given by: $L(f) = \|K_{c} - \overline{y}\| + \lambda \|c\|^{2}$ (Why?) $2K_{L}+2\chi = 2\vec{y}$ $(K+\lambda I)c=\overline{\gamma}$

SUPPOHT	VECTOR	Machikes	